Secure and privacy-preserving microblogging services: attacks and defenses

154767-Thumbnail Image.png
Description
Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging

Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging service has also became the target of malicious attackers due to its massive user engagement and structural openness. Although existed, little is still known in the community about new types of vulnerabilities in current microblogging services which could be leveraged by the intelligence-evolving attackers, and more importantly, the corresponding defenses that could prevent both the users and the microblogging service providers from being attacked. This dissertation aims to uncover a number of challenging security and privacy issues in microblogging services and also propose corresponding defenses.

This dissertation makes fivefold contributions. The first part presents the social botnet, a group of collaborative social bots under the control of a single botmaster, demonstrate the effectiveness and advantages of exploiting a social botnet for spam distribution and digital-influence manipulation, and propose the corresponding countermeasures and evaluate their effectiveness. Inspired by Pagerank, the second part describes TrueTop, the first sybil-resilient system to find the top-K influential users in microblogging services with very accurate results and strong resilience to sybil attacks. TrueTop has been implemented to handle millions of nodes and 100 times more edges on commodity computers. The third and fourth part demonstrate that microblogging systems' structural openness and users' carelessness could disclose the later's sensitive information such as home city and age. LocInfer, a novel and lightweight system, is presented to uncover the majority of the users in any metropolitan area; the dissertation also proposes MAIF, a novel machine learning framework that leverages public content and interaction information in microblogging services to infer users' hidden ages. Finally, the dissertation proposes the first privacy-preserving social media publishing framework to let the microblogging service providers publish their data to any third-party without disclosing users' privacy and meanwhile meeting the data's commercial utilities. This dissertation sheds the light on the state-of-the-art security and privacy issues in the microblogging services.
Date Created
2016
Agent

Transmission strategies for two-way relay channels

154202-Thumbnail Image.png
Description
The recent proposal of two-way relaying has attracted much attention due to its promising features for many practical scenarios. Hereby, two users communicate simultaneously in both directions to exchange their messages with the help of a relay node. This doctoral

The recent proposal of two-way relaying has attracted much attention due to its promising features for many practical scenarios. Hereby, two users communicate simultaneously in both directions to exchange their messages with the help of a relay node. This doctoral study investigates various aspects of two-way relaying. Specifically, the issue of asynchronism, lack of channel knowledge, transmission of correlated sources and multi-way relaying techniques involving multiple users are explored.

With the motivation of developing enabling techniques for two-way relay (TWR) channels experiencing excessive synchronization errors, two conceptually-different schemes are proposed to accommodate any relative misalignment between the signals received at any node. By designing a practical transmission/detection mechanism based on orthogonal frequency division multiplexing (OFDM), the proposed schemes perform significantly better than existing competing solutions. In a related direction, differential modulation is implemented for asynchronous TWR systems that lack the channel state information (CSI) knowledge. The challenge in this problem compared to the conventional point-to-point counterpart arises not only from the asynchrony but also from the existence of an interfering signal. Extensive numerical examples, supported by analytical work, are given to demonstrate the advantages of the proposed schemes.

Other important issues considered in this dissertation are related to the extension of the two-way relaying scheme to the multiple-user case, known as the multi-way relaying. First, a distributed source coding solution based on Slepian-Wolf coding is proposed to compress correlated messages close to the information theoretical limits in the context of multi-way relay (MWR) channels. Specifically, the syndrome approach based on low-density parity-check (LDPC) codes is implemented. A number of relaying strategies are considered for this problem offering a tradeoff between performance and complexity. The proposed solutions have shown significant improvements compared to the existing ones in terms of the achievable compression rates. On a different front, a novel approach to channel coding is proposed for the MWR channel based on the implementation of nested codes in a distributed manner. This approach ensures that each node decodes the messages of the other users without requiring complex operations at the relay, and at the same time, providing substantial benefits compared to the traditional routing solution.
Date Created
2015
Agent

Performance Analysis of Low-Complexity Resource-Allocation Algorithms in Stochastic Networks Using Fluid Models

154152-Thumbnail Image.png
Description
Resource allocation in communication networks aims to assign various resources such as power, bandwidth and load in a fair and economic fashion so that the networks can be better utilized and shared by the communicating entities. The design of efficient

Resource allocation in communication networks aims to assign various resources such as power, bandwidth and load in a fair and economic fashion so that the networks can be better utilized and shared by the communicating entities. The design of efficient resource-allocation algorithms is, however, becoming more and more challenging due to the precipitously increasing scale of the networks. This thesis strives to understand how to design such low-complexity algorithms with performance guarantees.

In the first part, the link scheduling problem in wireless ad hoc networks is considered. The scheduler is charge of finding a set of wireless data links to activate at each time slot with the considerations of wireless interference, traffic dynamics, network topology and quality-of-service (QoS) requirements. Two different yet essential scenarios are investigated: the first one is when each packet has a specific deadline after which it will be discarded; the second is when each packet traverses the network in multiple hops instead of leaving the network after a one-hop transmission. In both scenarios the links need to be carefully scheduled to avoid starvation of users and congestion on links. One greedy algorithm is analyzed in each of the two scenarios and performance guarantees in terms of throughput of the networks are derived.

In the second part, the load-balancing problem in parallel computing is studied. Tasks arrive in batches and the duty of the load balancer is to place the tasks on the machines such that minimum queueing delay is incurred. Due to the huge size of modern data centers, sampling the status of all machines may result in significant overhead. Consequently, an algorithm based on limited queue information at the machines is examined and its asymptotic delay performance is characterized and it is shown that the proposed algorithm achieves the same delay with remarkably less sampling overhead compared to the well-known power-of-two-choices algorithm.

Two messages of the thesis are the following: greedy algorithms can work well in a stochastic setting; the fluid model can be useful in "derandomizing" the system and reveal the nature of the algorithm.
Date Created
2015
Agent

Low-frequency accelerometer based on molecular electronic transducer in galvanic cell

154112-Thumbnail Image.png
Description
In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors

In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors based on MET technology consist of an electrochemical cell that can be used to detect the movement of liquid electrolyte between electrodes by converting it to an output current. Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise, small size and independence on the direction of sensitivity axis. In addition, the fact that MET based sensors have a liquid inertial mass with no moving parts makes them rugged and shock tolerant (basic survivability has been demonstrated to >20 kG).

A Zn-Cu electrochemical cell (Galvanic cell) was applied in the low-frequency accelerometer. Experimental results show that external vibrations (range from 18 to 70 Hz) were successfully detected by this accelerometer as reactions Zn→〖Zn〗^(2+)+2e^- occurs around the anode and 〖Cu〗^(2+)+2e^-→Cu around the cathode. Accordingly, the sensitivity of this MET device design is to achieve 10.4 V/G at 18 Hz. And the sources of noise have been analyzed.
Date Created
2015
Agent

On code design for interference channels

154022-Thumbnail Image.png
Description
There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed.

Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.
Date Created
2015
Agent

Wireless network design and optimization: from social awareness to security

153686-Thumbnail Image.png
Description
A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of the STAR mechanism is thoroughly investigated. Next, it studies mobile users' data usage behaviors under the impact of social services and the wireless operator's pricing. Based on a two-stage Stackelberg game formulation, the user demand equilibrium (UDE) is analyzed in Stage II and the optimal pricing strategy is developed in Stage I. Last, it studies opportunistic cooperative networking under an optimal stopping framework with two-level decision-making. For both cases with or without dedicated relays, the optimal relaying strategies are derived and analyzed.

The second part studies radar sensor network coverage for physical security. First, it studies placement of bistatic radar (BR) sensor networks for barrier coverage. The optimality of line-based placement is analyzed, and the optimal placement of BRs on a line segment is characterized. Then, it studies the coverage of radar sensor networks that exploits the Doppler effect. Based on a Doppler coverage model, an efficient method is devised to characterize Doppler-covered regions and an algorithm is developed to find the minimum radar density required for Doppler coverage.

The third part studies cyber security and privacy in socially-aware networking and computing. First, it studies random access control, cooperative jamming, and spectrum access under an extended SGUM framework that incorporates negative social ties. The SNEs are derived and analyzed. Then, it studies pseudonym change for personalized location privacy under the SGUM framework. The SNEs are analyzed and an efficient algorithm is developed to find an SNE with desirable properties.
Date Created
2015
Agent

Impact of social structure on wireless networking: modeling and utility

153629-Thumbnail Image.png
Description
The explosive growth of data generated from different services has opened a new vein of research commonly called ``big data.'' The sheer volume of the information in this data has yielded new applications in a wide range of fields,

The explosive growth of data generated from different services has opened a new vein of research commonly called ``big data.'' The sheer volume of the information in this data has yielded new applications in a wide range of fields, but the difficulties inherent in processing the enormous amount of data, as well as the rate at which it is generated, also give rise to significant challenges. In particular, processing, modeling, and understanding the structure of online social networks is computationally difficult due to these challenges. The goal of this study is twofold: first to present a new networked data processing framework to model this social structure, and second to highlight the wireless networking gains possible by using this social structure.

The first part of the dissertation considers a new method for modeling social networks via probabilistic graphical models. Specifically, this new method employs the t-cherry junction tree, a recent advancement in probabilistic graphical models, to develop a compact representation and good approximation of an otherwise intractable probabilistic model. There are a number of advantages in this approach: 1) the best approximation possible via junction trees belongs to the class of t-cherry junction trees; 2) constructing a t-cherry junction tree can be largely parallelized; and 3) inference can be performed using distributed computation. To improve the quality of approximation, an algorithm to build a higher order tree gracefully from an existing one, without constructing it from scratch, is developed. this approach is applied to Twitter data containing 100,000 nodes to study the problem of recommending connections to new users.

Next, the t-cherry junction tree framework is extended by considering the impact of estimating the distributions involved from a training data set. Understanding this impact is vital to real-world applications as distributions are not known perfectly, but rather generated from training data. First, the fidelity of the t-cherry junction tree approximation due to this estimation is quantified. Then the scaling behavior, in terms of the size of the t-cherry junction tree, is approximated to show that higher-order t-cherry junction trees, which with perfect information are higher fidelity approximations, may actually result in decreased fidelity due to the difficulties in accurately estimating higher-dimensional distributions. Finally, this part concludes by demonstrating these findings by considering a distributed detection situation in which the sensors' measurements are correlated.

Having developed a framework to model social structure in online social networks, the study then highlights two approaches for utilizing this social network data in existing wireless communication networks. The first approach is a novel application: using social networks to enhance device-to-device wireless communication. It is well known that wireless communication can be significantly improved by utilizing relays to aid in transmission. Rather than deploying dedicated relays, a system is designed in which users can relay traffic for other users if there is a shared social trust between them, e.g., they are ``friends'' on Facebook, and for users that do not share social trust, implements a coalitional game framework to motivate users to relay traffic for each other. This framework guarantees that all users improve their throughput via relaying while ensuring that each user will function as a relay only if there is a social trust relationship or, if there is no social trust, a cycle of reciprocity is established in which a set of users will agree to relay for each other. This new system shows significant throughput gain in simulated networks that utilize real-world social network traces.

The second application of social structure to wireless communication is an approach to reduce the congestion in cellular networks during peak times. This is achieved by two means: preloading and offloading. Preloading refers to the process of using social network data to predict user demand and serve some users early, before the cellular network traffic peaks. Offloading allows users that have already obtained a copy of the content to opportunistically serve other users using device-to-device communication, thus eliminating the need for some cellular traffic. These two methods work especially well in tandem, as preloading creates a base of users that can serve later users via offloading. These two processes can greatly reduce the peak cellular traffic under ideal conditions, and in a more realistic situation, the impact of uncertainty in human mobility and the social network structure is analyzed. Even with the randomness inherent in these processes, both preloading and offloading offer substantial improvement. Finally, potential difficulties in preloading multiple pieces of content simultaneously are highlighted, and a heuristic method to solve these challenges is developed.
Date Created
2015
Agent

Cost-Effective and Privacy-Preserving Energy Management for Smart Meters

129445-Thumbnail Image.png
Description

Smart meters, designed for information collection and system monitoring in smart grid, report fine-grained power consumption to utility providers. With these highly accurate profiles of energy usage, however, it is possible to identify consumers' specific activities or behavior patterns, thereby

Smart meters, designed for information collection and system monitoring in smart grid, report fine-grained power consumption to utility providers. With these highly accurate profiles of energy usage, however, it is possible to identify consumers' specific activities or behavior patterns, thereby giving rise to serious privacy concerns. This paper addresses these concerns by designing a cost-effective and privacy-preserving energy management technique that uses a rechargeable battery. From a holistic perspective, a dynamic programming framework is designed for consumers to strike a tradeoff between smart meter data privacy and the cost of electricity. In general, a major challenge in solving dynamic programming problems lies in the need for the knowledge of future electricity consumption events. By exploring the underlying structure of the original problem, an equivalent problem is derived, which can be solved by using only the current observations. An online control algorithm is then developed to solve the equivalent problem based on the Lyapunov optimization technique. It is shown that without the knowledge of the statistics of the time-varying load requirements and the electricity price processes, the proposed online control algorithm, parametrized by a positive value V, is within O (1/{V) of the optimal solution to the original problem, where the maximum value of V is limited by the battery capacity. The efficacy of the proposed algorithm is demonstrated through extensive numerical analysis using real data.

Date Created
2015-01-01
Agent

Simultaneous signaling and channel estimation for in-band full-duplex communications employing adaptive spatial protection

152897-Thumbnail Image.png
Description
In-band full-duplex relays are envisioned as promising solution to increase the throughput of next generation wireless communications. Full-duplex relays, being able to transmit and receive at same carrier frequency, offers increased spectral efficiency compared to half-duplex relays that transmit and

In-band full-duplex relays are envisioned as promising solution to increase the throughput of next generation wireless communications. Full-duplex relays, being able to transmit and receive at same carrier frequency, offers increased spectral efficiency compared to half-duplex relays that transmit and receive at different frequencies or times. The practical implementation of full-duplex relays is limited by the strong self-interference caused by the coupling of relay's own transit signals to its desired received signals. Several techniques have been proposed in literature to mitigate the relay self-interference. In this thesis, the performance of in-band full-duplex multiple-input multiple-output (MIMO) relays is considered in the context of simultaneous communications and channel estimation. In particular, adaptive spatial transmit techniques is considered to protect the full-duplex radio's receive array. It is assumed that relay's transmit and receive antenna phase centers are physically distinct. This allows the radio to employ adaptive spatial transmit and receive processing to mitigate self-interference.

The performance of this protection is dependent upon numerous factors, including channel estimation accuracy, which is the focus of this thesis. In particular, the concentration is on estimating the self-interference channel. A novel approach of simultaneous signaling to estimate the self-interference channel in MIMO full-duplex relays is proposed. To achieve this simultaneous communications

and channel estimation, a full-rank pilot signal at a reduced relative power is transmitted simultaneously with a low rank communication waveform. The self-interference mitigation is investigated in the context of eigenvalue spread of spatial relay receive co-variance matrix. Performance is demonstrated by using simulations,

in which orthogonal-frequency division-multiplexing communications and pilot sequences are employed.
Date Created
2014
Agent

Multipath mitigating correlation kernels

152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
Date Created
2013
Agent