Towards Learning Representations in Visual Computing Tasks

156084-Thumbnail Image.png
Description
The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.
Date Created
2017
Agent

Visual Event Cueing in Linked Spatiotemporal Data

155977-Thumbnail Image.png
Description
The media disperses a large amount of information daily pertaining to political events social movements, and societal conflicts. Media pertaining to these topics, no matter the format of publication used, are framed a particular way. Framing is used not for

The media disperses a large amount of information daily pertaining to political events social movements, and societal conflicts. Media pertaining to these topics, no matter the format of publication used, are framed a particular way. Framing is used not for just guiding audiences to desired beliefs, but also to fuel societal change or legitimize/delegitimize social movements. For this reason, tools that can help to clarify when changes in social discourse occur and identify their causes are of great use. This thesis presents a visual analytics framework that allows for the exploration and visualization of changes that occur in social climate with respect to space and time. Focusing on the links between data from the Armed Conflict Location and Event Data Project (ACLED) and a streaming RSS news data set, users can be cued into interesting events enabling them to form and explore hypothesis. This visual analytics framework also focuses on improving intervention detection, allowing users to hypothesize about correlations between events and happiness levels, and supports collaborative analysis.
Date Created
2017
Agent

Novel Image Representations and Learning Tasks

155963-Thumbnail Image.png
Description
Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to

Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is generalization of supervised learning, is one

example of task learning that is discussed. In particular, a novel non-parametric k-

NN-based multiple-instance learning is proposed, which is shown to outperform other

existing approaches. This solution is applied to a diabetic retinopathy pathology

detection problem eectively.

In cases of representation learning, generality of neural features are investigated

rst. This investigation leads to some critical understanding and results in feature

generality among datasets. The possibility of learning from a mentor network instead

of from labels is then investigated. Distillation of dark knowledge is used to eciently

mentor a small network from a pre-trained large mentor network. These studies help

in understanding representation learning with smaller and compressed networks.
Date Created
2017
Agent

Behavioral Pattern Mining and Modeling in Programming Problem Solving

155923-Thumbnail Image.png
Description
Online learning platforms such as massive online open courses (MOOCs) and

intelligent tutoring systems (ITSs) have made learning more accessible and personalized. These systems generate unprecedented amounts of behavioral data and open the way for predicting students’ future performance based on

Online learning platforms such as massive online open courses (MOOCs) and

intelligent tutoring systems (ITSs) have made learning more accessible and personalized. These systems generate unprecedented amounts of behavioral data and open the way for predicting students’ future performance based on their behavior, and for assessing their strengths and weaknesses in learning.

This thesis attempts to mine students’ working patterns using a programming problem solving system, and build predictive models to estimate students’ learning. QuizIT, a programming solving system, was used to collect students’ problem-solving activities from a lower-division computer science programming course in 2016 Fall semester. Differential mining techniques were used to extract frequent patterns based on each activity provided details about question’s correctness, complexity, topic, and time to represent students’ behavior. These patterns were further used to build classifiers to predict students’ performances.

Seven main learning behaviors were discovered based on these patterns, which provided insight into students’ metacognitive skills and thought processes. Besides predicting students’ performance group, the classification models also helped in finding important behaviors which were crucial in determining a student’s positive or negative performance throughout the semester.
Date Created
2017
Agent

A Biased Topic Modeling Approach for Case Control Study from Health Related Social Media Postings

155912-Thumbnail Image.png
Description
Online social networks are the hubs of social activity in cyberspace, and using them to exchange knowledge, experiences, and opinions is common. In this work, an advanced topic modeling framework is designed to analyse complex longitudinal health information from social

Online social networks are the hubs of social activity in cyberspace, and using them to exchange knowledge, experiences, and opinions is common. In this work, an advanced topic modeling framework is designed to analyse complex longitudinal health information from social media with minimal human annotation, and Adverse Drug Events and Reaction (ADR) information is extracted and automatically processed by using a biased topic modeling method. This framework improves and extends existing topic modelling algorithms that incorporate background knowledge. Using this approach, background knowledge such as ADR terms and other biomedical knowledge can be incorporated during the text mining process, with scores which indicate the presence of ADR being generated. A case control study has been performed on a data set of twitter timelines of women that announced their pregnancy, the goals of the study is to compare the ADR risk of medication usage from each medication category during the pregnancy.

In addition, to evaluate the prediction power of this approach, another important aspect of personalized medicine was addressed: the prediction of medication usage through the identification of risk groups. During the prediction process, the health information from Twitter timeline, such as diseases, symptoms, treatments, effects, and etc., is summarized by the topic modelling processes and the summarization results is used for prediction. Dimension reduction and topic similarity measurement are integrated into this framework for timeline classification and prediction. This work could be applied to provide guidelines for FDA drug risk categories. Currently, this process is done based on laboratory results and reported cases.

Finally, a multi-dimensional text data warehouse (MTD) to manage the output from the topic modelling is proposed. Some attempts have been also made to incorporate topic structure (ontology) and the MTD hierarchy. Results demonstrate that proposed methods show promise and this system represents a low-cost approach for drug safety early warning.
Date Created
2017
Agent

Analysis of the Aftereffects of Terror Attacks on Social Media

134809-Thumbnail Image.png
Description
Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that goes beyond the screen and affects behavior. During terror attacks

Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that goes beyond the screen and affects behavior. During terror attacks or worldwide crises, people turn to social media as a means of managing their anxiety, a mechanism of Terror Management Theory (TMT). These opinions have distinct impacts on the emotions that people express both online and offline through both positive and negative sentiments. This paper focuses on using sentiment analysis on twitter hash-tags during five major terrorist attacks that created a significant response on social media, which collectively show the effects that 140-character tweets have on perceptions in social media. The purpose of analyzing the sentiments of tweets after terror attacks allows for the visualization of the effect of key-words and the possibility of manipulation by the use of emotional contagion. Through sentiment analysis, positive, negative and neutral emotions were portrayed in the tweets. The keywords detected also portray characteristics about terror attacks which would allow for future analysis and predictions in regards to propagating a specific emotion on social media during future crisis.
Date Created
2016-12
Agent

GCKEngine - An Algorithm for Automatic Ontology Building

137682-Thumbnail Image.png
Description
To facilitate the development of the Semantic Web, we propose in this thesis a general automatic ontology-building algorithm which, given a pool of potential terms and a set of relationships to include in the ontology, can utilize information gathered from

To facilitate the development of the Semantic Web, we propose in this thesis a general automatic ontology-building algorithm which, given a pool of potential terms and a set of relationships to include in the ontology, can utilize information gathered from Google queries to build a full ontology for a certain domain. We utilized this ontology-building algorithm as part of a larger system to tag computer tutorials for three systems with different kinds of metadata, and index the tagged documents into a search engine. Our evaluation of the resultant search engine indicates that our automatic ontology-building algorithm is able to build relatively good-quality ontologies and utilize this ontology to effectively apply metadata to documents.
Date Created
2013-05
Agent

Analysis of Twitter's Effect on Stock Prices

137174-Thumbnail Image.png
Description
Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a process will be shown to be able to mine data

Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a process will be shown to be able to mine data about specific companies' stock prices. This was done by writing a program to grab tweets about the stocks of the thirty companies in the Dow Jones.
Date Created
2014-05
Agent

NBA PlayerTrack: A Mobile Application Providing NBA Fans with Statistics, News, and Information about their Favorite Players

135971-Thumbnail Image.png
Description
Current popular NBA mobile applications do little to provide information about the NBA's players, usually providing limited statistical information or news and completely ignoring players' presence on social media. For fans, especially fans who are unfamiliar with the NBA, finding

Current popular NBA mobile applications do little to provide information about the NBA's players, usually providing limited statistical information or news and completely ignoring players' presence on social media. For fans, especially fans who are unfamiliar with the NBA, finding this information by themselves can be a daunting task, one which requires extensive knowledge about how the NBA provides media related to its players. NBA PlayerTrack has been designed to centralize player information from a variety of media streams, making it easier for fans to learn about and stay up-to-date with players and enabling fan discussion about those players and the NBA in general. By providing a variety of references to the locations of player information, NBA PlayerTrack also serves as a tool for learning about how and where the NBA presents player-related media, allowing fans to more easily locate information they desire as they become more invested in the NBA.
Date Created
2015-12
Agent