Comparative Study of Classification Algorithms for Immunosignaturing Data

129075-Thumbnail Image.png
Description

Background: High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative

Background: High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed for these types of data. One of the more problematic is the assumption of independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus, algorithms that perform well for gene expression data may not be suitable when other technologies with different binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data.

Results: We characterized several classification algorithms to analyze immunosignaturing data. We selected several datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a wide variety of assessment criteria, we found ‘Naïve Bayes’ far more useful than other widely used methods due to its simplicity, robustness, speed and accuracy.

Conclusions: ‘Naïve Bayes’ algorithm appears to accommodate the complex patterns hidden within multilayered immunosignaturing microarray data due to its fundamental mathematical properties.

Date Created
2012-06-21
Agent

Analysis of immunosignaturing case studies

151234-Thumbnail Image.png
Description
Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in

Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to the analysis of immunosignaturing data. The overall aim of my dissertation is to develop novel computational and statistical methods for immunosignaturing data to access its potential for diagnostics and drug discovery. Firstly, I discovered that a classification algorithm Naive Bayes which leverages the biological independence of the probes on our array in such a way as to gather more information outperforms other classification algorithms due to speed and accuracy. Secondly, using this classifier, I then tested the specificity and sensitivity of immunosignaturing platform for its ability to resolve four different diseases (pancreatic cancer, pancreatitis, type 2 diabetes and panIN) that target the same organ (pancreas). These diseases were separated with >90% specificity from controls and from each other. Thirdly, I observed that the immunosignature of type 2 diabetes and cardiovascular complications are unique, consistent, and reproducible and can be separated by 100% accuracy from controls. But when these two complications arise in the same person, the resultant immunosignature is quite different in that of individuals with only one disease. I developed a method to trace back from informative random peptides in disease signatures to the potential antigen(s). Hence, I built a decipher system to trace random peptides in type 1 diabetes immunosignature to known antigens. Immunosignaturing, unlike the ELISA, has the ability to not only detect the presence of response but also absence of response during a disease. I observed, not only higher but also lower peptides intensities can be mapped to antigens in type 1 diabetes. To study immunosignaturing potential for population diagnostics, I studied effect of age, gender and geographical location on immunosignaturing data. For its potential to be a health monitoring technology, I proposed a single metric Coefficient of Variation that has shown potential to change significantly when a person enters a disease state.
Date Created
2012
Agent