Nutrient Load Modeling in the U.S.: Novel Considerations for Future Management

168298-Thumbnail Image.png
Description
Approximately 71% of the great lakes, lakes, reservoirs, and ponds, together with 51% of rivers and streams assessed in the US are impaired or threatened by pollution or do not meet the minimum water quality requirements. Pathogens, sediments, and nutrients

Approximately 71% of the great lakes, lakes, reservoirs, and ponds, together with 51% of rivers and streams assessed in the US are impaired or threatened by pollution or do not meet the minimum water quality requirements. Pathogens, sediments, and nutrients are leading causes of impairment, with agriculture being a top source of pollution. Agricultural pollution has become a global concern overtaking urban contamination as the major factor of inland and coastal waters degradation in many parts of the world. High-yielding crop production has been achieved by the intensive use of inorganic fertilizers that are mainly composed of Nitrogen (N) and Phosphorus (P). N and P are essential nutrients for ecosystem structure, processes, and functions. However, N and P in excess can be problematic to the environment. One of the major impacts of the increasing amount of these nutrients in the environment is the global expansion of harmful algal blooms (HABs). Major agricultural nutrient pollution sources and climate change can exacerbate these risks. This dissertation aims to guide future policies to mitigate issues linked to excess nutrient loads in the U.S. by evaluating the impact of climate change on nutrient loads and assessing the environmental impact as well as the spatial patterns of one of the major agricultural sources of nutrient pollution - Concentrated Animal Feeding Operations (CAFOs). Specifically, I first investigated the impact of bias correction techniques when modeling mid-century nutrient loads in a watershed heavily impacted by CAFOs. Second, I evaluated the role of CAFOs in land use change and subsequent environmental degradation of the surrounding environment. Finally, I assessed the spatial organization of CAFOs and its links to water quality conditions. The findings revealed unique insights for future nutrient management strategies in the U.S.
Date Created
2021
Agent

Participatory roles of urban trees in regulating environmental quality

157822-Thumbnail Image.png
Description
The world has been continuously urbanized and is currently accommodating more than half of the human population. Despite that cities cover only less than 3% of the Earth’s land surface area, they emerged as hotspots of anthropogenic activities. The drastic

The world has been continuously urbanized and is currently accommodating more than half of the human population. Despite that cities cover only less than 3% of the Earth’s land surface area, they emerged as hotspots of anthropogenic activities. The drastic land use changes, complex three-dimensional urban terrain, and anthropogenic heat emissions alter the transport of mass, heat, and momentum, especially within the urban canopy layer. As a result, cities are confronting numerous environmental challenges such as exacerbated heat stress, frequent air pollution episodes, degraded water quality, increased energy consumption and water use, etc. Green infrastructure, in particular, the use of trees, has been proved as an effective means to improve urban environmental quality in existing research. However, quantitative evaluations of the efficacy of urban trees in regulating air quality and thermal environment are impeded by the limited temporal and spatial scales in field measurements and the deficiency in numerical models.

This dissertation aims to advance the simulation of realistic functions of urban trees in both microscale and mesoscale numerical models, and to systematically evaluate the cooling capacity of urban trees under thermal extremes. A coupled large-eddy simulation–Lagrangian stochastic modeling framework is developed for the complex urban environment and is used to evaluate the impact of urban trees on traffic-emitted pollutants. Results show that the model is robust for capturing the dispersion of urban air pollutants and how strategically implemented urban trees can reduce vehicle-emitted pollution. To evaluate the impact of urban trees on the thermal environment, the radiative shading effect of trees are incorporated into the integrated Weather Research and Forecasting model. The mesoscale model is used to simulate shade trees over the contiguous United States, suggesting how the efficacy of urban trees depends on geographical and climatic conditions. The cooling capacity of urban trees and its response to thermal extremes are then quantified for major metropolitans in the United States based on remotely sensed data. It is found the nonlinear temperature dependence of the cooling capacity remarkably resembles the thermodynamic liquid-water–vapor equilibrium. The findings in this dissertation are informative to evaluating and implementing urban trees, and green infrastructure in large, as an important urban planning strategy to cope with emergent global environmental changes.
Date Created
2019
Agent

The Long-term Impact of Land Use Land Cover Change on Urban Climate: Evidence from the Phoenix Metropolitan Area, Arizona

156665-Thumbnail Image.png
Description
This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters.

This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product and a time-series trend analysis to discover areas that experienced significant changes of SUHI intensity between 2000 and 2017. The heating and cooling effects of different urban land use land cover (LULC) types was also examined using classified Landsat satellite images. The second chapter is focused on urban ET and the impacts of urban LULC change on ET. An empirical model of urban ET for PMA was built using flux tower data and MODIS land products using multivariate regression analysis. A time-series trend analysis was then performed to discover areas in PMA that experienced significant changes of ET between 2001 and 2015. The impact of urban LULC change on ET was examined using classified LULC maps. The third chapter models urban OWU in PMA using a surface energy balance model named METRIC (Mapping Evapotranspiration at high spatial Resolution with Internalized Calibration) and time-series Landsat Thematic Mapper 5 imagery for 2010. The relationship between urban LULC types and OWU was examined with the use of very high-resolution land cover classification data generated from the National Agriculture Imagery Program (NAIP) imagery and regression analysis. Socio-demographic variables were selected from census data at the census track level and analyzed against OWU to study their relationship using correlation analysis. This dissertation makes significant contributions and expands the knowledge of long-term urban climate dynamics for PMA and the influence of urban expansion and LULC change on regional climate. Research findings and results can be used to provide constructive suggestions to urban planners, decision-makers, and city managers to formulate new policies and regulations when planning new constructions for the purpose of sustainable development for a desert city.
Date Created
2018
Agent

Daytime Cooling Efficiency and Diurnal Energy Balance in Phoenix, Arizona, USA

128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

Date Created
2012-08-12
Agent

Spatial growth of informal settlements in Delhi: an application of remote sensing

149815-Thumbnail Image.png
Description
Slum development and growth is quite popular in developing countries. Many studies have been done on what social and economic factors are the drivers in establishment of informal settlements at a single cross-section of time, however limited work has been

Slum development and growth is quite popular in developing countries. Many studies have been done on what social and economic factors are the drivers in establishment of informal settlements at a single cross-section of time, however limited work has been done in studying their spatial growth patterns over time. This study attempts to study a sample of 30 informal settlements that exist in the National Capital Territory of India over a period of 40 years and identify relationships between the spatial growth rates and relevant factors identified in previous socio-economic studies of slums using advanced statistical methods. One of the key contributions of this paper is indicating the usefulness of satellite imagery or remote sensing data in spatial-longitudinal studies. This research utilizes readily available LANDSAT images to recognize the decadal spatial growth from 1970 to 2000, and also in extension, calculate the BI (transformed NDVI) as a proxy for the intensity of development for the settlements. A series of regression models were run after processing the data, and the levels of significance were then studied and compared to see which relationships indicated the highest levels of significance. It was observed that the change in BI had a higher strength of relationships with the change in independent variables than the settlement area growth. Also, logarithmic and cubic models showed the highest R-Square values than any other tested models.
Date Created
2011
Agent

Reconstruction of a tornado disaster employing remote sensing techniques: a case study of the 1999 Moore, Oklahoma tornado

149673-Thumbnail Image.png
Description

Remote sensing has demonstrated to be an instrumental tool in monitoring land changes as a result of anthropogenic change or natural disasters. Most disaster studies have focused on large-scale events with few analyzing small-scale disasters such as tornadoes. These studies

Remote sensing has demonstrated to be an instrumental tool in monitoring land changes as a result of anthropogenic change or natural disasters. Most disaster studies have focused on large-scale events with few analyzing small-scale disasters such as tornadoes. These studies have only provided a damage assessment perspective with the continued need to assess reconstruction. This study attempts to fill that void by examining recovery from the 1999 Moore, Oklahoma Tornado utilizing Landsat TM and ETM+ imagery. Recovery was assessed for 2000, 2001 and 2002 using spectral enhancements (vegetative and urban indices and a combination of the two), a recovery index and different statistical thresholds. Classification accuracy assessments were performed to determine the precision of recovery and select the best results. This analysis proved that medium resolution imagery could be used in conjunction with geospatial techniques to capture recovery. The new indices, Shortwave Infrared Index (SWIRI) and Coupled Vegetation and Urban Index (CVUI), developed for disaster management, were the most effective at discerning reconstruction using the 1.5 standard deviation threshold. Recovery rates for F-scale damages revealed that the most incredibly damaged areas associated with an F5 rating were the slowest to recover, while the lesser damaged areas associated with F1-F3 ratings were the quickest to rebuild. These findings were consistent for 2000, 2001 and 2002 also exposing that complete recovery was never attained in any of the F-scale damage zones by 2002. This study illustrates the significance the biophysical impact has on recovery as well as the effectiveness of using medium resolution imagery such as Landsat in future research.

Date Created
2011
Agent

A comparison of fuzzy models in similarity assessment of misregistered area class maps

149378-Thumbnail Image.png
Description

Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In

Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.

Date Created
2010
Agent