A rapid lipid-based approach for normalization of quantum dot-detected biomarker expression on extracellular vesicles in complex biological samples

157729-Thumbnail Image.png
Description
Extracellular Vesicles (EVs), particularly exosomes, are of considerable interest as tumor biomarkers since tumor-derived EVs contain a broad array of information about tumor pathophysiology including its metabolic and metastatic status. However, current EV based assays cannot distinguish between EV biomarker

Extracellular Vesicles (EVs), particularly exosomes, are of considerable interest as tumor biomarkers since tumor-derived EVs contain a broad array of information about tumor pathophysiology including its metabolic and metastatic status. However, current EV based assays cannot distinguish between EV biomarker changes by altered secretion of EVs during diseased conditions like cancer, inflammation, etc. that express a constant level of a given biomarker, stable secretion of EVs with altered biomarker expression, or a combination of these two factors. This issue was addressed by developing a nanoparticle and dye-based fluorescent immunoassay that can distinguish among these possibilities by normalizing EV biomarker level(s) to EV abundance, revealing average expression levels of EV biomarker under observation. In this approach, EVs are captured from complex samples (e.g. serum), stained with a lipophilic dye and hybridized with antibody-conjugated quantum dot probes for specific EV surface biomarkers. EV dye signal is used to quantify EV abundance and normalize EV surface biomarker expression levels. EVs from malignant (PANC-1) and nonmalignant pancreatic cell lines (HPNE) exhibited similar staining, and probe-to-dye ratios did not change with EV abundance, allowing direct analysis of normalized EV biomarker expression without a separate EV quantification step. This EV biomarker normalization approach markedly improved the ability of serum levels of two pancreatic cancer biomarkers, EV EpCAM, and EV EphA2, to discriminate pancreatic cancer patients from nonmalignant control subjects. The streamlined workflow and robust results of this assay are suitable for rapid translation to clinical applications and its flexible design permits it to be rapidly adapted to quantitate other EV biomarkers by the simple swapping of the antibody-conjugated quantum dot probes for those that recognize a different disease-specific EV biomarker utilizing a workflow that is suitable for rapid clinical translation.
Date Created
2019
Agent

Genome-Wide Characterization of Pancreatic Adenocarcinoma Patients Using Next Generation Sequencing

128865-Thumbnail Image.png
Description

Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue,

Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection.

Date Created
2012-10-10
Agent

Parallel Screening of FDA-Approved Antineoplastic Drugs for Identifying Sensitizers of TRAIL-Induced Apoptosis in Cancer Cells

128991-Thumbnail Image.png
Description

Background: Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating

Background: Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis.

Methods: FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis.

Results: Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells.

Conclusions: The identification of a number of FDA-approved drugs as TRAIL sensitizers can expand chemotherapeutic options for combination treatments in prostate and pancreatic cancer diseases.

Date Created
2011-11-01
Agent