Plio-Pleistocene Sediment Provenance and Erosion Rates Along the East African Rift System

161941-Thumbnail Image.png
Description
The tectonism, volcanism, and sedimentation along the East African Rift System (EARS) produced a series of rift basins with a rich paleoanthropological record, including a Late Miocene–present record of hominin evolution. To better understand the relationship between Earth system history

The tectonism, volcanism, and sedimentation along the East African Rift System (EARS) produced a series of rift basins with a rich paleoanthropological record, including a Late Miocene–present record of hominin evolution. To better understand the relationship between Earth system history and human evolution within the EARS, the Hominin Sites and Paleolakes Drilling Project (HSPDP) collected paleolake sediments near key paleoanthropological sites in Ethiopia and Kenya, compiling a multi-proxy, high-resolution geological and environmental record. As part of the HSPDP, I studied the detrital mineral record of the basins and evaluated tectonic and climatic controls on East African landscapes during the Plio-Pleistocene using samples from three of the drill sites, Chew Bahir: (CHB, ~620–present; Ethiopia), Northern Awash (NA, ~3.3–2.9 Ma; Ethiopia,), and West Turkana (WTK, ~1.9–1.4 Ma; Kenya). I employed laser ablation U/Pb and (U-Th)/He double dating (LADD) of detrital zircons, which yields paired U/Pb and (U-Th)/He dates, and (U-Th)/He dating of detrital apatites to evaluate sediment provenance and the cooling history of the source rocks. In addition, I used in situ 10Be cosmogenic radionuclide analyses to determine paleoerosion rates. Two chapters of this dissertation focus on results from the NA and WTK drill sites. Source units for the NA and WTK drill sites are largely Cenozoic volcanic rocks, and the detrital zircon record yields an extensive record of the timing of various phases of volcanism within the EARS. Exceptionally young zircon (U-Th)/He dates reflect partial resetting associated with late mafic volcanism and/or hydrothermal activity. Erosion rates are consistent and relatively low across the Plio-Pleistocene, despite significant tectonic and geomorphic shifts in the landscape. Two other chapters of this dissertation cover results from the CHB drill site. The Chew Bahir basin has significant exposures of Neoproterozoic and Early Paleozoic crystalline basement units, and the detrital zircon record yields one singular phase of volcanism in the EARS. The CHB erosion rates show an overall decreasing trend over time, consistent with an aridifying climate, and increased environmental variability after ~200 ka.
Date Created
2021
Agent

Hominin Dietary Niche Breadth Expansion During Pliocene Environmental Change in Eastern Africa

158266-Thumbnail Image.png
Description
Stable carbon isotope data for early Pliocene hominins Ardipithecus ramidus and Australopithecus anamensis show narrow, C3-dominated isotopic signatures. Conversely, mid-Pliocene Au. afarensis has a wider isotopic distribution and consumed both C3 and C4 plants, indicating a transition to a broader

Stable carbon isotope data for early Pliocene hominins Ardipithecus ramidus and Australopithecus anamensis show narrow, C3-dominated isotopic signatures. Conversely, mid-Pliocene Au. afarensis has a wider isotopic distribution and consumed both C3 and C4 plants, indicating a transition to a broader dietary niche by ~ 3.5 million years ago (Ma). Dietary breadth is an important aspect of the modern human adaptive suite, but why hominins expanded their dietary niche ~ 3.5 Ma is poorly understood at present. Eastern Africa has produced a rich Pliocene record of hominin species and associated mammalian faunas that can be used to address this question. This dissertation hypothesizes that the shift in hominin dietary breadth was driven by a transition to more open and seasonal environments in which food resources were more patchily distributed both spatially and temporally. To this end, I use a multiproxy approach that combines hypsodonty, mesowear, faunal abundance, and stable isotope data for temporally well-constrained early and mid-Pliocene mammal assemblages (5.3-2.95 Ma) from Ethiopia, Kenya, and Tanzania to infer patterns of environmental change through time. Hypsodonty analyses revealed that early Pliocene sites had higher annual precipitation, lower precipitation seasonality, and lower temperature seasonality than mid-Pliocene sites. Mesowear analyses, however, did not show from attrition- to abrasion- dominated wear through time. Abundance data suggest that there was a trend towards aridity, as Tragelaphini (woodland antelope) decline while Alcelaphini (grassland antelope) increased in abundance through time. Carbon isotope data indicate that most taxa shifted to diets focusing on C4 grasses through time, which closely follows paleosol carbon isotope data documenting the expansion of grassland ecosystems in eastern Africa. Overall, the results suggest Ar. ramidus and Au. anamensis preferentially exploited habitats in which preferred food resources were likely available year-round, whereas Au. afarensis lived in more variable, seasonal environments in which preferred foods were available seasonally. Au. afarensis and K. platyops likely expanded their dietary niche in less stable environments, as reflected in their wider isotopic niche breadth.
Date Created
2020
Agent

Probability Models of Bone Surface Modification and Application to Fossil Evidence from Ledi-Geraru (2.82 Ma) and Dikika (3.39 Ma), Afar Ethiopia

157490-Thumbnail Image.png
Description
Two of the defining behaviors associated with the hominin lineage are an increased reliance on tool use and the routine incorporation of animal tissue in the diet. These adaptations have been linked to numerous downstream consequences including key physiological adaptations

Two of the defining behaviors associated with the hominin lineage are an increased reliance on tool use and the routine incorporation of animal tissue in the diet. These adaptations have been linked to numerous downstream consequences including key physiological adaptations as well as social and cognitive effects associated with modern humans. Thus, a critical issue in human evolution is how to determine when hominins began incorporating significant amounts of meat into their diets. Bone surface modifications (BSM) have long been recognized as a powerful inferential tool in identifying the differential involvement of actors responsible for altering assemblages of bone recovered from both archaeological and paleontological contexts and remain a primary source of direct evidence for butchery activities. Thus, determining the spatiotemporal context of increased carnivory in the hominin lineage relies on the accurate identification of fossil BSM.

Multidecade-long debates over the agents responsible for individual BSM indicate systemic flaws in historical approaches to identification. These debates are in part due to the extreme morphological overlap between BSM produced by certain agents of modification. The primary goal of this dissertation project therefore, is to construct probability models of BSM capable of identifying individual marks with an associated probability of assignment. Using a multivariate Bayesian approach to analyze experimentally-generated BSM data, this dissertation uses two different models, one incorporating both two and three-dimensional (3D) metric and attribute data associated with individual BSM and a second model comparing 3D geometric morphometric (GM) shape data associated with BSM.

The 2D/3D attribute model of BSM is used evaluate an assemblage of fossil BSM recovered from the Ledi-Geraru research area, Ethiopia (2.82 Ma) in spatiotemporal association with early Homo. The results of the analysis reveal compelling evidence for early butchery activities, suggesting hominins may have been using both modified and unmodified stone implements to process carcasses.

The second model, based upon 3D GM data, was used to evaluate the earliest purported evidence for stone-mediated butchery at Dikika, Ethiopia (3.39 Ma). The Dikika marks have been argued to be the result of crocodile feeding, trampling, and butchery by three different research groups. The 3D GM model evaluates the likelihood of each of these actors in the production of the controversial Dikika marks.
Date Created
2019
Agent

The Hominin Sites and Paleolakes Drilling Project: Inferring the Environmental Context of Human Evolution From Eastern African Rift Lake Deposits

141472-Thumbnail Image.png
Description

The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered

The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012–2014 HSPDP coring campaign.

Date Created
2016-02-19
Agent

Geochronological and Taxonomic Revisions of the Middle Eocene Whistler Squat Quarry (Devil’s Graveyard Formation, Texas) and Implications for the Early Uintan in Trans-Pecos Texas

128864-Thumbnail Image.png
Description

The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff

The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New [superscript 40]Ar/[superscript 39]Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b.

Date Created
2014-07-02
Agent