Urban Scaling and the Production Function for Cities

128748-Thumbnail Image.png
Description

The factors that account for the differences in the economic productivity of urban areas have remained difficult to measure and identify unambiguously. Here we show that a microscopic derivation of urban scaling relations for economic quantities vs. population, obtained from

The factors that account for the differences in the economic productivity of urban areas have remained difficult to measure and identify unambiguously. Here we show that a microscopic derivation of urban scaling relations for economic quantities vs. population, obtained from the consideration of social and infrastructural properties common to all cities, implies an effective model of economic output in the form of a Cobb-Douglas type production function. As a result we derive a new expression for the Total Factor Productivity (TFP) of urban areas, which is the standard measure of economic productivity per unit of aggregate production factors (labor and capital). Using these results we empirically demonstrate that there is a systematic dependence of urban productivity on city population size, resulting from the mismatch between the size dependence of wages and labor, so that in contemporary US cities productivity increases by about 11% with each doubling of their population. Moreover, deviations from the average scale dependence of economic output, capturing the effect of local factors, including history and other local contingencies, also manifest surprising regularities. Although, productivity is maximized by the combination of high wages and low labor input, high productivity cities show invariably high wages and high levels of employment relative to their size expectation. Conversely, low productivity cities show both low wages and employment. These results shed new light on the microscopic processes that underlie urban economic productivity, explain the emergence of effective aggregate urban economic output models in terms of labor and capital inputs and may inform the development of economic theory related to growth.

Date Created
2013-03-27
Agent

Population-Area Relationship for Medieval European Cities

128794-Thumbnail Image.png
Description

Medieval European urbanization presents a line of continuity between earlier cities and modern European urban systems. Yet, many of the spatial, political and economic features of medieval European cities were particular to the Middle Ages, and subsequently changed over the

Medieval European urbanization presents a line of continuity between earlier cities and modern European urban systems. Yet, many of the spatial, political and economic features of medieval European cities were particular to the Middle Ages, and subsequently changed over the Early Modern Period and Industrial Revolution. There is a long tradition of demographic studies estimating the population sizes of medieval European cities, and comparative analyses of these data have shed much light on the long-term evolution of urban systems. However, the next step—to systematically relate the population size of these cities to their spatial and socioeconomic characteristics—has seldom been taken. This raises a series of interesting questions, as both modern and ancient cities have been observed to obey area-population relationships predicted by settlement scaling theory.

To address these questions, we analyze a new dataset for the settled area and population of 173 European cities from the early fourteenth century to determine the relationship between population and settled area. To interpret this data, we develop two related models that lead to differing predictions regarding the quantitative form of the population-area relationship, depending on the level of social mixing present in these cities. Our empirical estimates of model parameters show a strong densification of cities with city population size, consistent with patterns in contemporary cities. Although social life in medieval Europe was orchestrated by hierarchical institutions (e.g., guilds, church, municipal organizations), our results show no statistically significant influence of these institutions on agglomeration effects. The similarities between the empirical patterns of settlement relating area to population observed here support the hypothesis that cities throughout history share common principles of organization that self-consistently relate their socioeconomic networks to structured urban spaces.

Date Created
2016-10-05
Agent

Applying distributional approaches to understand patterns of urban differentiation

153018-Thumbnail Image.png
Description
Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities

Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities differ from one another, sometimes wildly. However, the mechanisms by which size, heterogeneity and structure shape the general statistical patterns that describe urban economic output are still unclear. Given the rapid rate of urbanization around the globe, we need precise and formal mathematical understandings of these matters. In this context, I perform in this dissertation probabilistic, distributional and computational explorations of (i) how the broadness, or narrowness, of the distribution of individual productivities within cities determines what and how we measure urban systemic output, (ii) how urban scaling may be expressed as a statistical statement when urban metrics display strong stochasticity, (iii) how the processes of aggregation constrain the variability of total urban output, and (iv) how the structure of urban skills diversification within cities induces a multiplicative process in the production of urban output.
Date Created
2014
Agent