The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail,…
The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals who think for a living express feelings of stress about their ability to respond and fear missing critical tasks or information as they attempt to wade through all the electronic communication that floods their inboxes. Although many electronic communication tools compete for the attention of the contemporary knowledge worker, most professionals use an electronic personal information management (PIM) system, more commonly known as an e-mail application and often the ubiquitous Microsoft Outlook program. The aim of this research was to provide knowledge workers with solutions to manage the influx of electronic communication that arrives daily by studying the workers in their working environment. This dissertation represents a quest to understand the current strategies knowledge workers use to manage their e-mail, and if modification of e-mail management strategies can have an impact on productivity and stress levels for these professionals. Today’s knowledge workers rarely work entirely alone, justifying the importance of also exploring methods to improve electronic communications within teams.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This study analyzed the environmental impacts of the materials phase of a net-zero energy building. The Center for Sustainable Landscapes (CSL) is a three-story, 24,350 square foot educational, research, and administrative office in Pittsburgh, PA, USA. This net-zero energy building…
This study analyzed the environmental impacts of the materials phase of a net-zero energy building. The Center for Sustainable Landscapes (CSL) is a three-story, 24,350 square foot educational, research, and administrative office in Pittsburgh, PA, USA. This net-zero energy building is designed to meet Living Building Challenge criteria. The largest environmental impacts from the production of building materials is from concrete, structural steel, photovoltaic (PV) panels, inverters, and gravel. Comparing the LCA results of the CSL to standard commercial structures reveals a 10% larger global warming potential and a nearly equal embodied energy per square feet, largely due to the CSL’s PV system. As a net-zero energy building, the environmental impacts associated with the use phase are expected to be very low relative to standard structures. Future studies will incorporate the construction and use phases of the CSL for a more comprehensive life cycle perspective.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Advancing sustainable food systems requires holistic understanding and solutions-oriented approaches that transcend disciplines, so expertise in a variety of subjects is necessary. Proposed solutions are usually technically or socially oriented, but disagreement over the best approach to the future of…
Advancing sustainable food systems requires holistic understanding and solutions-oriented approaches that transcend disciplines, so expertise in a variety of subjects is necessary. Proposed solutions are usually technically or socially oriented, but disagreement over the best approach to the future of food dominates the dialogue. Technological optimists argue that scientific advances are necessary to feed the world, but environmental purists believe that reductions in consumption and waste are sufficient and less risky. Life cycle assessment (LCA) helps resolve debates through quantitative analysis of environmental impacts from products which serve the same function. LCA used to compare dietary choices reveals that simple plant-based diets are better for the environment than diets that include animal products. However, analysis of soy protein isolate (SPI) demonstrates that certain plant-based proteins may be less preferable for the environment than some unprocessed meats in several categories due to additional impacts that come from industrial processing. LCAs' focus on production risks ignoring consumers, but the food system exists to serve consumers, who can be major drivers of change. Therefore, the path to a sustainable food system requires addressing consumption issues as well. Existing methods for advancing sustainable food systems that equate more information with better behavior or performance are insufficient to create change. Addressing food system issues requires sufficient tacit knowledge to understand how arguments are framed, what the supporting content is, the findings of primary sources, and complex and controversial dialogue surrounding innovations and interventions for food system sustainability. This level of expertise is called interactional competence and it is necessary to drive and maintain holistic progress towards sustainability. Development strategies for interactional competence are informed by studying the motivations and strategies utilized by vegans. A new methodology helps advance understanding of expertise development by assessing levels of expertise and reveals insights into how vegans maintain commitment to a principle that influences their daily lives. The study of veganism and expertise reveals that while providing information to debunk fallacies is important, the development of tacit knowledge is fundamental to advance to a stage of competence.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study…
The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study investigated the viability of aligning land management with biofuel production on marginal lands. Biofuel crop production on two types of marginal lands, namely urban vacant lots and abandoned mine lands (AMLs), were assessed. The investigation of biofuel production on urban marginal land was carried out in Pittsburgh between 2008 and 2011, using the sunflower gardens developed by a Pittsburgh non-profit as an example. Results showed that the crops from urban marginal lands were safe for biofuel. The crop yield was 20% of that on agricultural land while the low input agriculture was used in crop cultivation. The energy balance analysis demonstrated that the sunflower gardens could produce a net energy return even at the current low yield. Biofuel production on AML was assessed from experiments conducted in a greenhouse for sunflower, soybean, corn, canola and camelina. The research successfully created an industrial symbiosis by using bauxite as soil amendment to enable plant growth on very acidic mine refuse. Phytoremediation and soil amendments were found to be able to effectively reduce contamination in the AML and its runoff. Results from this research supported that biofuel production on marginal lands could be a unique and feasible option for cultivating biofuel feedstocks.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that…
Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed. The comparative LCA evaluated a reusable dental bur (specifically, a 2.00mm Internal Irrigation Pilot Drill) reused 30 instances versus 30 identical burs used as disposables. The LCA methodology was performed using framework described by the International Organization for Standardization (ISO) 14040 series. Sensitivity analyses were performed with respect to ultrasonic and autoclave loading. Findings from this research showed that when the ultrasonic and autoclave are loaded optimally, reusable burs had 40% less of an environmental impact than burs used on a disposable basis. When the ultrasonic and autoclave were loaded to 66% capacity, there was an environmental breakeven point between disposable and reusable burs. Eutrophication, carcinogenic impacts, non-carcinogenic impacts, and acidification were limited when cleaning equipment (i.e., ultrasonic and autoclave) were optimally loaded. Additionally, the bur's packaging materials contributed more negative environmental impacts than the production and use of the bur itself. Therefore, less materially-intensive packaging should be used. Specifically, the glass fiber reinforced plastic casing should be substituted for a material with a reduced environmental footprint.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)