A Strategy to Establish a Quality Assurance/Quality Control Plan for the Application of Biosensors for the Detection of E. Coli in Water

128656-Thumbnail Image.png
Description

Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan

Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to demonstrate accuracy and reliability of the biosensor method for the detection of E. coli in drinking water samples. In this study, different reagents and assay conditions including temperatures, holding time, E. coli strains and concentrations, dissolving agents, salinity and pH effects, quality of substrates of various suppliers of 4-methylumbelliferyl glucuronide (MUG), and environmental water samples were included in the QA/QC plan and used in the assay optimization and documentation. Furthermore, the procedural QA/QC for the monitoring of drinking water samples was established to validate the performance of the biosensor platform for the detection of E. coli using a culture-based standard technique. Implementing the developed QA/QC plan, the same level of precision and accuracy was achieved using both the standard and the biosensor methods. The established procedural QA/QC for the biosensor will provide a reliable tool for a near real-time monitoring of E. coli in drinking water samples to both industry and regulatory authorities.

Date Created
2017-01-03
Agent

Biosensor platform for rapid detection of E. coli in drinking water

153868-Thumbnail Image.png
Description
The need for rapid, specific and sensitive assays that provide a detection of bacterial indicators are important for monitoring water quality. Rapid detection using biosensor is a novel approach for microbiological testing applications. Besides, validation of rapid methods

The need for rapid, specific and sensitive assays that provide a detection of bacterial indicators are important for monitoring water quality. Rapid detection using biosensor is a novel approach for microbiological testing applications. Besides, validation of rapid methods is an obstacle in adoption of such new bio-sensing technologies. In this study, the strategy developed is based on using the compound 4-methylumbelliferyl glucuronide (MUG), which is hydrolyzed rapidly by the action of E. coli β-D-glucuronidase (GUD) enzyme to yield a fluorogenic product that can be quantified and directly related to the number of E. coli cells present in water samples. The detection time required for the biosensor response ranged from 30 to 120 minutes, depending on the number of bacteria. The specificity of the MUG based biosensor platform assay for the detection of E. coli was examined by pure cultures of non-target bacterial genera and also non-target substrates. GUD activity was found to be specific for E. coli and no such enzymatic activity was detected in other species. Moreover, the sensitivity of rapid enzymatic assays was investigated and repeatedly determined to be less than 10 E. coli cells per reaction vial concentrated from 100 mL of water samples. The applicability of the method was tested by performing fluorescence assays under pure and mixed bacterial flora in environmental samples. In addition, the procedural QA/QC for routine monitoring of drinking water samples have been validated by comparing the performance of the biosensor platform for the detection of E. coli and culture-based standard techniques such as Membrane Filtration (MF). The results of this study indicated that the fluorescence signals generated in samples using specific substrate molecules can be utilized to develop a bio-sensing platform for the detection of E. coli in drinking water. The procedural QA/QC of the biosensor will provide both industry and regulatory authorities a useful tool for near real-time monitoring of E. coli in drinking water samples. Furthermore, this system can be applied independently or in conjunction with other methods as a part of an array of biochemical assays in order to reliably detect E. coli in water.
Date Created
2015
Agent

Evaluation of Glycol Ether as an Alternative to Perchloroethylene in Dry Cleaning

129236-Thumbnail Image.png
Description

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its adverse impacts on human health and environmental quality. As PCE use is curtailed, effective alternatives must be analyzed for their toxicity and impacts to human health and the environment. Potential alternatives to PCE in dry cleaning include dipropylene glycol n-butyl ether (DPnB) and dipropylene glycol tert-butyl ether (DPtB), both promising to pose a relatively smaller risk. To evaluate these two alternatives to PCE, we established and scored performance criteria, including chemical toxicity, employee and customer exposure levels, impacts on the general population, costs of each system, and cleaning efficacy. The scores received for PCE were 5, 5, 3, 5, 3, and 3, respectively, and DPnB and DPtB scored 3, 1, 2, 2, 4, and 4, respectively. An aggregate sum of the performance criteria yielded a favorably low score of “16” for both DPnB and DPtB compared to “24” for PCE. We conclude that DPnB and DPtB are preferable dry cleaning agents, exhibiting reduced human toxicity and a lesser adverse impact on human health and the environment compared to PCE, with comparable capital investments, and moderately higher annual operating costs.

Date Created
2014-04-03
Agent