Genetic diversity across the pseudoautosomal boundary varies across human populations

135114-Thumbnail Image.png
Description
Unlike the autosomes, recombination on the sex chromosomes is limited to the pseudoautosomal regions (PARs) at each end of the chromosome. PAR1 spans approximately 2.7 Mb from the tip of the proximal arm of each sex chromosome, and a pseudoautosomal

Unlike the autosomes, recombination on the sex chromosomes is limited to the pseudoautosomal regions (PARs) at each end of the chromosome. PAR1 spans approximately 2.7 Mb from the tip of the proximal arm of each sex chromosome, and a pseudoautosomal boundary between the PAR1 and non-PAR region is thought to have evolved from a Y-specific inversion that suppressed recombination across the boundary. In addition to the two PARs, there is also a human-specific X-transposed region (XTR) that was duplicated from the X to the Y chromosome. Genetic diversity is expected to be higher in recombining than nonrecombining regions, particularly because recombination reduces the effects of linked selection, allowing neutral variation to accumulate. We previously showed that diversity decreases linearly across the previously defined pseudoautosomal boundary (rather than drop suddenly at the boundary), suggesting that the pseudoautosomal boundary may not be as strict as previously thought. In this study, we analyzed data from 1271 genetic females to explore the extent to which the pseudoautosomal boundary varies among human populations (broadly, African, European, South Asian, East Asian, and the Americas). We found that, in all populations, genetic diversity was significantly higher in the PAR1 and XTR than in the non-PAR regions, and that diversity decreased linearly from the PAR1 to finally reach a non-PAR value well past the pseudoautosomal boundary in all populations. However, we also found that the location at which diversity changes from reflecting the higher PAR1 diversity to the lower nonPAR diversity varied by as much as 500 kb among populations. The lack of genetic evidence for a strict pseudoautosomal boundary and the variability in patterns of diversity across the pseudoautosomal boundary are consistent with two potential explanations: (1) the boundary itself may vary across populations, or (2) that population-specific demographic histories have shaped diversity across the pseudoautosomal boundary.
Date Created
2016-12
Agent

Standard mapping protocols misestimate sex-biased gene expression

134552-Thumbnail Image.png
Description
There are several challenges to accurately inferring levels of transcription using RNA-sequencing (RNA-seq) data, including detecting and correcting for reference genome mapping bias. One potential confounder of RNA-seq analysis results from the application of a standardized pipeline to samples of

There are several challenges to accurately inferring levels of transcription using RNA-sequencing (RNA-seq) data, including detecting and correcting for reference genome mapping bias. One potential confounder of RNA-seq analysis results from the application of a standardized pipeline to samples of different sexes in species with chromosomal sex determination. The homology between the human X and Y chromosomes will routinely cause mismapping to occur, artificially biasing estimates of sex-biased gene transcription. For this reason we tested sex-specific mapping scenarios in humans on RNA-seq samples from the brains of 5 genetic females and 5 genetic males to assess how inferences of differential gene expression patterns change depending on the reference genome. We first applied a mapping protocol where we mapped all individuals to the entire human reference genome (complete), including the X and Y chromosomes, and computed differential expression between the set of genetic male and genetic female samples. We next mapped the genetic female samples (46,XX) to the human reference genome with the Y chromosome removed (Y-excluded) and the genetic male samples (46, XY) to the human reference genome (including the Y chromosome), but with the pseudoautosomal regions of the Y chromosome hard-masked (YPARs-masked) for the two sex-specific mappings. Using the complete and sex-specific mapping protocols, we compared the differential expression measurements of genetic males and genetic females from cuffDiff outputs. The second strategy called 33 additional genes as being differentially expressed between the two sexes when compared to the complete mapping protocol. This research provides a framework for a new standard of reference genome mappings to correct for sex-biased gene expression estimates that can be used in future studies.
Date Created
2017-05
Agent

Evolution of Dosage Compensation in Anolis Carolinensis, a Reptile With XX/XY Chromosomal Sex Determination

128475-Thumbnail Image.png
Description

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes will result in unequal gene expression between the sexes (e.g. between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes will result in unequal gene expression between the sexes (e.g. between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression. We compared genome-wide levels of transcription between males and females, and between the X chromosome and the autosomes in the green anole, Anolis carolinensis. We present evidence for dosage compensation between the sexes, and between the sex chromosomes and the autosomes. When dividing the X chromosome into regions based on linkage groups, we discovered that genes in the first reported X-linked region, anole linkage group b (LGb), exhibit complete dosage compensation, although the rest of the X-linked genes exhibit incomplete dosage compensation. Our data further suggest that the mechanism of this dosage compensation is upregulation of the X chromosome in males. We report that approximately 10% of coding genes, most of which are on the autosomes, are differentially expressed between males and females. In addition, genes on the X chromosome exhibited higher ratios of nonsynonymous to synonymous substitution than autosomal genes, consistent with the fast-X effect. Our results from the green anole add an additional observation of dosage compensation in a species with XX/XY sex determination.

Date Created
2016-11-09
Agent