Adaptive methods within a sequential Bayesian approach for structural health monitoring

152344-Thumbnail Image.png
Description
Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time computational burden is decreased significantly and the number of possible observation modes can be increased. Using sensor measurements from real experiments, the overall sequential Bayesian estimation approach, with the adaptive capability of varying the state dynamics and observation modes, is demonstrated for tracking crack damage.
Date Created
2013
Agent

Adaptive learning and unsupervised clustering of immune responses using microarray random sequence peptides

152307-Thumbnail Image.png
Description
Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can

Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can potentially provide pre-symptomatic diagnosis for infectious diseases or detection of biological threats. Currently, traditional bioinformatics tools, such as data mining classification algorithms, are used to process the large amount of peptide microarray data. However, these methods generally require training data and do not adapt to changing immune conditions or additional patient information. This work proposes advanced processing techniques to improve the classification and identification of single and multiple underlying immune response states embedded in immunosignatures, making it possible to detect both known and previously unknown diseases or biothreat agents. Novel adaptive learning methodologies for un- supervised and semi-supervised clustering integrated with immunosignature feature extraction approaches are proposed. The techniques are based on extracting novel stochastic features from microarray binding intensities and use Dirichlet process Gaussian mixture models to adaptively cluster the immunosignatures in the feature space. This learning-while-clustering approach allows continuous discovery of antibody activity by adaptively detecting new disease states, with limited a priori disease or patient information. A beta process factor analysis model to determine underlying patient immune responses is also proposed to further improve the adaptive clustering performance by formatting new relationships between patients and antibody activity. In order to extend the clustering methods for diagnosing multiple states in a patient, the adaptive hierarchical Dirichlet process is integrated with modified beta process factor analysis latent feature modeling to identify relationships between patients and infectious agents. The use of Bayesian nonparametric adaptive learning techniques allows for further clustering if additional patient data is received. Significant improvements in feature identification and immune response clustering are demonstrated using samples from patients with different diseases.
Date Created
2013
Agent

Efficient Bayesian tracking of multiple sources of neural activity: algorithms and real-time FPGA implementation

151971-Thumbnail Image.png
Description
Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these

Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems. First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF (PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that the proposed PPF-IMH algorithm improves the root mean-squared error (RMSE) estimation performance, and we demonstrate that a parallel implementation of the algorithm results in significant reduction in inter-processor communication. We apply our implementation on a Xilinx Virtex-5 field programmable gate array (FPGA) platform to demonstrate that, for a one-dimensional problem, the PPF-IMH architecture with four processing elements and 1,000 particles can process input samples at 170 kHz by using less than 5% FPGA resources. We also apply the proposed PPF-IMH to waveform-agile sensing to achieve real-time tracking of dynamic targets with high RMSE tracking performance. We next integrate the PPF-IMH algorithm to track the dynamic parameters in neural sensing when the number of neural dipole sources is known. We analyze the computational complexity of a PF based method and propose the use of multiple particle filtering (MPF) to reduce the complexity. We demonstrate the improved performance of MPF using numerical simulations with both synthetic and real data. We also propose an FPGA implementation of the MPF algorithm and show that the implementation supports real-time tracking. For the more realistic scenario of automatically estimating an unknown number of time-varying neural dipole sources, we propose a new approach based on the probability hypothesis density filtering (PHDF) algorithm. The PHDF is implemented using particle filtering (PF-PHDF), and it is applied in a closed-loop to first estimate the number of dipole sources and then their corresponding amplitude, location and orientation parameters. We demonstrate the improved tracking performance of the proposed PF-PHDF algorithm and map it onto a Xilinx Virtex-5 FPGA platform to show its real-time implementation potential. Finally, we propose the use of sensor scheduling and compressive sensing techniques to reduce the number of active sensors, and thus overall power consumption, of electroencephalography (EEG) systems. We propose an efficient sensor scheduling algorithm which adaptively configures EEG sensors at each measurement time interval to reduce the number of sensors needed for accurate tracking. We combine the sensor scheduling method with PF-PHDF and implement the system on an FPGA platform to achieve real-time tracking. We also investigate the sparsity of EEG signals and integrate compressive sensing with PF to estimate neural activity. Simulation results show that both sensor scheduling and compressive sensing based methods achieve comparable tracking performance with significantly reduced number of sensors.
Date Created
2013
Agent

Distributed inference using bounded transmissions

151953-Thumbnail Image.png
Description
Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward (AF) and detect-and-forward (DF) schemes. The effect of fading is shown to be detrimental to the detection performance and simulations are provided to corroborate the analytical results. The second part of the dissertation studies a distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel. The conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify and forward technique and its robustness to impulsive sensing noise distributions is highlighted. It is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results. In the third part of this dissertation, the problem of estimating the average of samples distributed at the nodes of a sensor network is considered. A distributed average consensus algorithm in which every sensor transmits with bounded peak power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the variance of the communication noise. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. It is shown that using bounded transmissions results in slower convergence compared to the linear consensus algorithm based on the Laplacian heuristic. Simulations corroborate our analytical findings. Finally, a robust distributed average consensus algorithm in which every sensor performs a nonlinear processing at the receiver is proposed. It is shown that non-linearity at the receiver nodes makes the algorithm robust to a wide range of channel noise distributions including the impulsive ones. It is shown that the nodes reach consensus asymptotically and similar results are obtained as in the case of transmit non-linearity. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.
Date Created
2013
Agent

Probabilistic fatigue damage localization at unknown temperatures using guided wave methods

151771-Thumbnail Image.png
Description
This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of temperatures. The numerical results showed that this approach would be capable of experimentally estimating the temperature and velocity in the lug joint for temperatures from -60°C to 150°C. The velocity estimation algorithm was found to significantly increase the accuracy of localization at temperatures above 120°C when error due to incorrect velocity selection begins to outweigh the error due to time-of-flight measurements.
Date Created
2013
Agent

Increasing the efficiency of Doppler processing and backend processing in medical ultrasound systems

151700-Thumbnail Image.png
Description
Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires divisions and square root operations that are hard to implement. We propose two approximation techniques to replace these computations. The simulation results on cyst images show that the proposed approximations do not affect the estimation performance. We also study backend processing which includes envelope detection, log compression and scan conversion. Three different envelope detection methods are compared. Among them, FIR based Hilbert Transform is considered the best choice when phase information is not needed, while quadrature demodulation is a better choice if phase information is necessary. Bilinear and Gaussian interpolation are considered for scan conversion. Through simulations of a cyst image, we show that bilinear interpolation provides comparable contrast-to-noise ratio (CNR) performance with Gaussian interpolation and has lower computational complexity. Thus, bilinear interpolation is chosen for our system.
Date Created
2013
Agent

Isometric and dynamic contraction muscle fatigue assessment using time-frequency methods

151480-Thumbnail Image.png
Description
The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work

The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use in clinical and training applications. Studies demonstrated that as fatigue progresses, the EMG signal undergoes a shift in frequency, and different physiological mechanisms on the possible cause of the shift were considered. Time-frequency processing, using the Wigner distribution or spectrogram, is one of the techniques used to estimate the instantaneous mean frequency and instantaneous median frequency of the EMG signal using a variety of techniques. However, these time-frequency methods suffer either from cross-term interference when processing signals with multiple components or time-frequency resolution due to the use of windowing. This study proposes the use of the matching pursuit decomposition (MPD) with a Gaussian dictionary to process EMG signals produced during both isometric and dynamic contractions. In particular, the MPD obtains unique time-frequency features that represent the EMG signal time-frequency dependence without suffering from cross-terms or loss in time-frequency resolution. As the MPD does not depend on an analysis window like the spectrogram, it is more robust in applying the timefrequency features to identify the spectral time-variation of the EGM signal.
Date Created
2012
Agent

Adaptive parameter estimation, modeling and patient-specific classification of electrocardiogram signals

151465-Thumbnail Image.png
Description
Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical

Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on a priori information and user-specified model parameters. Also, ECG beat morphologies, which vary greatly across patients and disease states, cannot be uniquely characterized by a single model. In this work, sequential Bayesian based methods are used to appropriately model and adaptively select the corresponding model parameters of ECG signals. An adaptive framework based on a sequential Bayesian tracking method is proposed to adaptively select the cardiac parameters that minimize the estimation error, thus precluding the need for pre-processing. Simulations using real ECG data from the online Physionet database demonstrate the improvement in performance of the proposed algorithm in accurately estimating critical heart disease parameters. In addition, two new approaches to ECG modeling are presented using the interacting multiple model and the sequential Markov chain Monte Carlo technique with adaptive model selection. Both these methods can adaptively choose between different models for various ECG beat morphologies without requiring prior ECG information, as demonstrated by using real ECG signals. A supervised Bayesian maximum-likelihood (ML) based classifier uses the estimated model parameters to classify different types of cardiac arrhythmias. However, the non-availability of sufficient amounts of representative training data and the large inter-patient variability pose a challenge to the existing supervised learning algorithms, resulting in a poor classification performance. In addition, recently developed unsupervised learning methods require a priori knowledge on the number of diseases to cluster the ECG data, which often evolves over time. In order to address these issues, an adaptive learning ECG classification method that uses Dirichlet process Gaussian mixture models is proposed. This approach does not place any restriction on the number of disease classes, nor does it require any training data. This algorithm is adapted to be patient-specific by labeling or identifying the generated mixtures using the Bayesian ML method, assuming the availability of labeled training data.
Date Created
2012
Agent

Advances in micromechanics modeling of composites structures for structural health monitoring

151455-Thumbnail Image.png
Description
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber

Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focusses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
Date Created
2012
Agent

Adaptive filter bank time-frequency representations

151382-Thumbnail Image.png
Description
A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most

A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its application in Fourier optics: it is shown that the WD is analogous to the spectral dispersion that results from a diffraction grating, and time and frequency are similarly analogous to a one dimensional spatial coordinate and wavenumber. The grating is compared with a simple polychromator, which is a bank of optical filters. Another well-known TFR is the short time Fourier transform (STFT). Its discrete version can be shown to be equivalent to a filter bank, an array of bandpass filters that enable localized processing of the analysis signals in different sub-bands. This work proposes a signal-adaptive method of generating TFRs. In order to minimize distortion in analyzing a signal, the method modifies the filter bank to consist of non-overlapping rectangular bandpass filters generated using the Butterworth filter design process. The information contained in the resulting TFR can be used to reconstruct the signal, and perfect reconstruction techniques involving quadrature mirror filter banks are compared with a simple Fourier synthesis sum. The optimal filter parameters of the rectangular filters are selected adaptively by minimizing the mean-squared error (MSE) from a pseudo-reconstructed version of the analysis signal. The reconstruction MSE is proposed as an error metric for characterizing TFRs; a practical measure of the error requires normalization and cross correlation with the analysis signal. Simulations were performed to demonstrate the the effectiveness of the new adaptive TFR and its relation to swept-tuned spectrum analyzers.
Date Created
2012
Agent