Description
The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use in clinical and training applications. Studies demonstrated that as fatigue progresses, the EMG signal undergoes a shift in frequency, and different physiological mechanisms on the possible cause of the shift were considered. Time-frequency processing, using the Wigner distribution or spectrogram, is one of the techniques used to estimate the instantaneous mean frequency and instantaneous median frequency of the EMG signal using a variety of techniques. However, these time-frequency methods suffer either from cross-term interference when processing signals with multiple components or time-frequency resolution due to the use of windowing. This study proposes the use of the matching pursuit decomposition (MPD) with a Gaussian dictionary to process EMG signals produced during both isometric and dynamic contractions. In particular, the MPD obtains unique time-frequency features that represent the EMG signal time-frequency dependence without suffering from cross-terms or loss in time-frequency resolution. As the MPD does not depend on an analysis window like the spectrogram, it is more robust in applying the timefrequency features to identify the spectral time-variation of the EGM signal.
Download count: 7
Details
Title
- Isometric and dynamic contraction muscle fatigue assessment using time-frequency methods
Contributors
- Austin, Hiroko (Author)
- Papandreou-Suppappola, Antonia (Thesis advisor)
- Kovvali, Narayan (Committee member)
- Muthuswamy, Jitendran (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2012
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: M.S., Arizona State University, 2012
-
bibliographyIncludes bibliographical references (p. 86-90)
-
Field of study: Electrical engineering
Citation and reuse
Statement of Responsibility
by Hiroko Austin