A Study of User Behaviors and Activities on Online Mental Health Communities

157843-Thumbnail Image.png
Description
Social media is a medium that contains rich information which has been shared by many users every second every day. This information can be utilized for various outcomes such as understanding user behaviors, learning the effect of social media on

Social media is a medium that contains rich information which has been shared by many users every second every day. This information can be utilized for various outcomes such as understanding user behaviors, learning the effect of social media on a community, and developing a decision-making system based on the information available. With the growing popularity of social networking sites, people can freely express their opinions and feelings which results in a tremendous amount of user-generated data. The rich amount of social media data has opened the path for researchers to study and understand the users’ behaviors and mental health conditions. Several studies have shown that social media provides a means to capture an individual state of mind. Given the social media data and related work in this field, this work studies the scope of users’ discussion among online mental health communities. In the first part of this dissertation, this work focuses on the role of social media on mental health among sexual abuse community. It employs natural language processing techniques to extract topics of responses, examine how diverse these topics are to answer research questions such as whether responses are limited to emotional support; if not, what other topics are; what the diversity of topics manifests; how online response differs from traditional response found in a physical world. To answer these questions, this work extracts Reddit posts on rape to understand the nature of user responses for this stigmatized topic. In the second part of this dissertation, this work expands to a broader range of online communities. In particular, it investigates the potential roles of social media on mental health among five major communities, i.e., trauma and abuse community, psychosis and anxiety community, compulsive disorders community, coping and therapy community, and mood disorders community. This work studies how people interact with each other in each of these communities and what these online forums provide a resource to users who seek help. To understand users’ behaviors, this work extracts Reddit posts on 52 related subcommunities and analyzes the linguistic behavior of each community. Experiments in this dissertation show that Reddit is a good medium for users with mental health issues to find related helpful resources. Another interesting observation is an interesting topic cluster from users’ posts which shows that discussion and communication among users help individuals to find proper resources for their problem. Moreover, results show that the anonymity of users in Reddit allows them to have discussions about different topics beyond social support such as financial and religious support.
Date Created
2019
Agent

Machine Learning to Predict Rapid Progression of Carotid Atherosclerosis in Patients With Impaired Glucose Tolerance

128381-Thumbnail Image.png
Description

Objectives: Prediabetes is a major epidemic and is associated with adverse cardio-cerebrovascular outcomes. Early identification of patients who will develop rapid progression of atherosclerosis could be beneficial for improved risk stratification. In this paper, we investigate important factors impacting the prediction,

Objectives: Prediabetes is a major epidemic and is associated with adverse cardio-cerebrovascular outcomes. Early identification of patients who will develop rapid progression of atherosclerosis could be beneficial for improved risk stratification. In this paper, we investigate important factors impacting the prediction, using several machine learning methods, of rapid progression of carotid intima-media thickness in impaired glucose tolerance (IGT) participants.

Methods: In the Actos Now for Prevention of Diabetes (ACT NOW) study, 382 participants with IGT underwent carotid intima-media thickness (CIMT) ultrasound evaluation at baseline and at 15–18 months, and were divided into rapid progressors (RP, n = 39, 58 ± 17.5 μM change) and non-rapid progressors (NRP, n = 343, 5.8 ± 20 μM change, p < 0.001 versus RP). To deal with complex multi-modal data consisting of demographic, clinical, and laboratory variables, we propose a general data-driven framework to investigate the ACT NOW dataset. In particular, we first employed a Fisher Score-based feature selection method to identify the most effective variables and then proposed a probabilistic Bayes-based learning method for the prediction. Comparison of the methods and factors was conducted using area under the receiver operating characteristic curve (AUC) analyses and Brier score.

Results: The experimental results show that the proposed learning methods performed well in identifying or predicting RP. Among the methods, the performance of Naïve Bayes was the best (AUC 0.797, Brier score 0.085) compared to multilayer perceptron (0.729, 0.086) and random forest (0.642, 0.10). The results also show that feature selection has a significant positive impact on the data prediction performance.

Conclusions: By dealing with multi-modal data, the proposed learning methods show effectiveness in predicting prediabetics at risk for rapid atherosclerosis progression. The proposed framework demonstrated utility in outcome prediction in a typical multidimensional clinical dataset with a relatively small number of subjects, extending the potential utility of machine learning approaches beyond extremely large-scale datasets.

Date Created
2016-09-05
Agent