In-vehicle multimodal interaction: an approach to mitigate driver distraction

153910-Thumbnail Image.png
Description
Despite the various driver assistance systems and electronics, the threat to life of driver, passengers and other people on the road still persists. With the growth in technology, the use of in-vehicle devices with a plethora of buttons and features

Despite the various driver assistance systems and electronics, the threat to life of driver, passengers and other people on the road still persists. With the growth in technology, the use of in-vehicle devices with a plethora of buttons and features is increasing resulting in increased distraction. Recently, speech recognition has emerged as an alternative to distraction and has the potential to be beneficial. However, considering the fact that automotive environment is dynamic and noisy in nature, distraction may not arise from the manual interaction, but due to the cognitive load. Hence, speech recognition certainly cannot be a reliable mode of communication.

The thesis is focused on proposing a simultaneous multimodal approach for designing interface between driver and vehicle with a goal to enable the driver to be more attentive to the driving tasks and spend less time fiddling with distractive tasks. By analyzing the human-human multimodal interaction techniques, new modes have been identified and experimented, especially suitable for the automotive context. The identified modes are touch, speech, graphics, voice-tip and text-tip. The multiple modes are intended to work collectively to make the interaction more intuitive and natural. In order to obtain a minimalist user-centered design for the center stack, various design principles such as 80/20 rule, contour bias, affordance, flexibility-usability trade-off etc. have been implemented on the prototypes. The prototype was developed using the Dragon software development kit on android platform for speech recognition.

In the present study, the driver behavior was investigated in an experiment conducted on the DriveSafety driving simulator DS-600s. Twelve volunteers drove the simulator under two conditions: (1) accessing the center stack applications using touch only and (2) accessing the applications using speech with offered text-tip. The duration for which user looked away from the road (eyes-off-road) was measured manually for each scenario. Comparison of results proved that eyes-off-road time is less for the second scenario. The minimalist design with 8-10 icons per screen proved to be effective as all the readings were within the driver distraction recommendations (eyes-off-road time < 2sec per screen) defined by NHTSA.
Date Created
2015
Agent

Modeling and measuring cognitive load to reduce driver distraction in smart cars

Description
Driver distraction research has a long history spanning nearly 50 years, intensifying in the last decade. The focus has always been on identifying the distractive tasks and measuring the respective harm level. As in-vehicle technology advances, the list of distractive

Driver distraction research has a long history spanning nearly 50 years, intensifying in the last decade. The focus has always been on identifying the distractive tasks and measuring the respective harm level. As in-vehicle technology advances, the list of distractive activities grows along with crash risk. Additionally, the distractive activities become more common and complicated, especially with regard to In-Car Interactive System. This work's main focus is on driver distraction caused by the in-car interactive System. There have been many User Interaction Designs (Buttons, Speech, Visual) for Human-Car communication, in the past and currently present. And, all related studies suggest that driver distraction level is still high and there is a need for a better design. Multimodal Interaction is a design approach, which relies on using multiple modes for humans to interact with the car & hence reducing driver distraction by allowing the driver to choose the most suitable mode with minimum distraction. Additionally, combining multiple modes simultaneously provides more natural interaction, which could lead to less distraction. The main goal of MMI is to enable the driver to be more attentive to driving tasks and spend less time fiddling with distractive tasks. Engineering based method is used to measure driver distraction. This method uses metrics like Reaction time, Acceleration, Lane Departure obtained from test cases.
Date Created
2015
Agent