Functional Switch in the Role of 5-HT1B Receptors as a Result of Cocaine Withdrawal in Mice

137015-Thumbnail Image.png
Description
Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B

Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine system, has been implicated in the incentive motivational and rewarding effects of cocaine. Our research suggests that the stimulation of 5-HT1BRs produces different effects at various time points in the addiction cycle. During maintenance of chronic cocaine administration, 5-HT1BR stimulation has a facilitative effect on the reinforcing properties of cocaine. However 5-HT1BR stimulation exhibits inhibitory effects on reinforcement during prolonged abstinence from cocaine. The aim of this study was to examine the possibility of a switch in the functional role of 5-HT1BRs in the locomotor effects of cocaine at different time points of chronic cocaine administration in mice. We found that the 5-HT1BR agonist CP 94,253 increased locomotor activity in mice tested one day after the last chronic cocaine administration session regardless of whether the chronic treatment was cocaine or saline and regardless of challenge injection (i.e., cocaine or saline). Yet after abstinence, CP 94,253 induced a decrease in locomotor activity in mice challenged with saline and attenuated cocaine-induced locomotion relative to cocaine challenge after vehicle pretreatment. These findings suggest that a switch in the functional role of 5-HT1BR is observed at different stages of the addiction cycle and further suggest that clinical applications of drugs acting on 5-HT1BR should consider these effects.
Date Created
2014-05
Agent

Dosage effects of highly selective D2 antagonist SV293 on drug-seeking behavior and locomotor activity

136985-Thumbnail Image.png
Description
Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor effects of using three varying doses (1.0, 3.0, and 5.6 mg/kg) of a new, highly selective D2 antagonist, SV293. These doses were tested across five different conditions that explore the effects of controls, SV293 by itself, and in combination with cocaine. These tests are designed to separately assess the effects of the antagonist between drug-seeking behaviors and locomotor activity. The cue tests showed that SV293 reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivational effects of cocaine-related cues. SV293 alone also reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivation for cocaine. Cocaine in combination with SV293 did not produce any significant effects on drug-seeking behavior, suggesting that SV293 did not alter the motivational effects of cocaine itself. Spontaneous locomotor activity tests with SV293 alone showed no reduction in locomotor activity; however, the addition of cocaine showed a significant decrease in locomotor activity at the high dose of SV293. Overall, the 5.6 mg/kg dose of SV293 decreases drug-seeking behavior elicited by cocaine-related cues and environmental stimuli, as well as cocaine-induced locomotor activity. This selective D2 antagonism could ultimately help elucidate the mechanisms of other dopamine receptors with particular emphasis on their involvement with drug addiction. Key words: cocaine, SV293, D2, antagonists, dopamine
Date Created
2014-05
Agent

Nicotine Self-Administration and the Social Context

136349-Thumbnail Image.png
Description
Research suggests that the more positive the first drug experience, the more likely addiction will develop. Since smoking is initiated in a social setting, it is surprising how little is known about social context effects on acquisition of nicotine self-administration.

Research suggests that the more positive the first drug experience, the more likely addiction will develop. Since smoking is initiated in a social setting, it is surprising how little is known about social context effects on acquisition of nicotine self-administration. We investigated this issue in rats during late adolescence using conjoined self-administration chambers that had a removable shared wall. Rats were assigned to training conditions with either a solid black plexiglass or wire mesh partition in place throughout 22 subsequent 2-hour daily training sessions. Initially, 58 day-old (late-adolescent) male and female rats received 2, 30-min habituation sessions/day over 2 consecutive days, with only an inactive lever present. Sessions began with presentation of a retractable lever and thereafter each response on that lever resulted in simultaneous delivery of saline or 1 of 2 doses of nicotine (0.015 or 0.030 mg/kg, IV) and lever retraction for a 20-second time out. The findings indicate that the social context inhibits nicotine self-administration in female rats during the development of addiction, but has little effect on the initial stages of drug acquisition. Furthermore, the data suggest that in male rats the social context enhances responding independent of nicotine, but has few effects on nicotine self-administration during the development of addiction. The findings have important implications for substance use disorders.
Date Created
2015-05
Agent

Overexpression of MicroRNA-495 and its Effects on Cocaine Addiction

135839-Thumbnail Image.png
Description
Drug addiction is a pervasive problem in society, as it produces major increases in health care costs, crime, and loss of productivity. With over 3 million long-term users in America alone, cocaine is one of the most identifiable and addictive

Drug addiction is a pervasive problem in society, as it produces major increases in health care costs, crime, and loss of productivity. With over 3 million long-term users in America alone, cocaine is one of the most identifiable and addictive drugs. Cocaine produces major neurological changes in the central nervous system, including widespread changes in gene expression. MicroRNAs are small, non-coding transcripts that regulate gene expression post-transcriptionally by preventing translation into function protein. Given that one miRNA can target several genes simultaneously, they have the potential to attenuate drug-induced changes in gene expression. We previously found that the microRNA miR-495 regulates several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc), an important brain region involved in reward and motivation. Furthermore, acute cocaine decreases miR-495 expression and increases ARG expression in the NAc. Therefore, the aim of this thesis was to determine the effect of miR-495 overexpression in the NAc on cocaine self-administration behavior. Male Sprague Dawley rats were trained to lever press for cocaine and were then infused with a lentivirus into the NAc that either overexpressed green fluorescent protein (GFP, control) or miR-495+GFP. We then tested the rats on several doses of cocaine on both a fixed ratio (5) and progressive ratio (PR) schedule of reinforcement. We performed a follow-up experiment that included the same viral manipulation and testing, but the reinforcer was switched to food pellets. We found that NAc miR-495 overexpression reduces cocaine self-administration on a PR, but not an FR5, schedule of reinforcement. We found no effects of miR-495 overexpression on food reinforcement. These data suggest that NAc miR-495 regulates genes involved in motivation for cocaine, but not general motivation based on the data with food reinforcement. Future studies will seek to determine the specific target genes responsible for our behavioral effects.
Date Created
2016-05
Agent

The Role of ERK/MAPK In The Postnatal Development of Lower Motor Neurons

155839-Thumbnail Image.png
Description
The Erk/MAPK pathway plays a major role in cell growth, differentiation, and survival. Genetic mutations that cause dysregulation in this pathway can result in the development of Rasopathies, a group of several different syndromes including Noonan Syndrome, Costello Syndrome, and

The Erk/MAPK pathway plays a major role in cell growth, differentiation, and survival. Genetic mutations that cause dysregulation in this pathway can result in the development of Rasopathies, a group of several different syndromes including Noonan Syndrome, Costello Syndrome, and Neurofibromatosis Type-1. Since these mutations are germline and affect all cell types it is hard to differentiate the role that Erk/MAPK plays in each cell type. Previous research has shown that individual cell types utilize the Erk/MAPK pathway in different ways. For example, the morphological development of lower motor neuron axonal projections is Erk/MAPK-independent during embryogenesis, while nociceptive neuron projections require Erk/MAPK to innervate epidermal targets. Here, we tested whether Erk/MAPK played a role in the postnatal development of lower motor neurons during crucial periods of activity-dependent circuit modifications. We have generated Cre-dependent conditional Erk/MAPK mutant mice that exhibit either loss or gain of Erk/MAPK signaling specifically in ChAT:Cre expressing lower motor neurons. Importantly, we found that Erk/MAPK is necessary for the development of neuromuscular junction morphology by the second postnatal week. In contrast, we were unable to detect a significant difference in lower motor neuron development in Erk/MAPK gain-of-function mice. The data suggests that Erk/MAPK plays an important role in postnatal lower motor neuron development by regulating the morphological maturation of the neuromuscular junction.
Date Created
2017
Agent

Regulation of the Serotonin 2a Receptor Encoding Gene Htr2a by Early Growth Response Gene 3 (Egr3)

155762-Thumbnail Image.png
Description
Schizophrenia is considered a multifactorial disorder with complex genetic variants in response to environmental stimuli. However, the specific genetic contribution to schizophrenia risk is largely unknown. The transcription factor early growth response gene 3 (EGR3) can be activated rapidly after

Schizophrenia is considered a multifactorial disorder with complex genetic variants in response to environmental stimuli. However, the specific genetic contribution to schizophrenia risk is largely unknown. The transcription factor early growth response gene 3 (EGR3) can be activated rapidly after stimuli and thus may translate environmental stimuli into gene changes that influence schizophrenia risk. However, the downstream genes that may be regulated by EGR3 are not clear. While the 5-Hydroxytryptamine receptor 2A (5HT2AR) - encoding gene Htr2a has been implicated in the etiology of schizophrenia, the mechanisms by which Htr2a influences susceptibility to this illness are poorly understood. We previously found that in addition to schizophrenia-like abnormalities, Egr3 -/- mice have approximately 70% deduction of 5HT2AR level in the prefrontal cortex, which underlines their resistant to the sedating effect of clozapine. These findings indicate that the two schizophrenia candidate genes are in the same biological pathway that integrates multiple components resulting in schizophrenia. This dissertation is aimed to identify the mechanisms by which Egr3 regulates the expression of Htr2a in response to environmental stimuli like stress.

To determine if Egr3 alters Htr2a transcription under stress, I examined messenger ribonucleic acid (mRNA) levels of these two genes in wildtype (WT) and Egr3 -/- mice after 6hrs of sleep deprivation (SD). I found both genes are increased in WT mice after SD compared with controls. In addition, Egr3 is required for Htr2a induction because SD fails to induce Htr2a expression in Egr3 -/- mice. Next, I performed chromatin immunoprecipitation (ChIP) to determine if EGR3 binds to Htr2a promoter in vivo. I found a significant increase of EGR3 binding to Htr2a distal promoter 2hrs after seizure. To determine the functionality of this binding, I co-transfected the CMV- EGR3 vector or CMV- vector alone with the Htr2a distal promoter reporter clone. I found overexpression of EGR3 activates the Htr2a distal promoter-driven luciferase gene. Although the ChIP assay shows no direct binding of EGR3 to Htr2a proximal promoter, I found EGR3 overexpression activates Htr2a proximal promoter-driven luciferase gene. These findings suggest that EGR3 regulates Htr2a probably through both direct and indirect ways.
Date Created
2017
Agent

Preclinical Evidence That 5-HT1B Receptor Agonists Show Promise as Medications for Psychostimulant Use Disorders

127979-Thumbnail Image.png
Description

Background: 5-HT1B receptor agonists enhance cocaine intake during daily self-administration sessions but decrease cocaine intake when tested after prolonged abstinence. We examined if 5-HT1B receptor agonists produce similar abstinence-dependent effects on methamphetamine intake.

Methods: Male rats were trained to self-administer methamphetamine (0.1 mg/kg,

Background: 5-HT1B receptor agonists enhance cocaine intake during daily self-administration sessions but decrease cocaine intake when tested after prolonged abstinence. We examined if 5-HT1B receptor agonists produce similar abstinence-dependent effects on methamphetamine intake.

Methods: Male rats were trained to self-administer methamphetamine (0.1 mg/kg, i.v.) on low (fixed ratio 5 and variable ratio 5) and high (progressive ratio) effort schedules of reinforcement until intake was stable. Rats were then tested for the effects of the selective 5-HT1B receptor agonist, CP 94,253 (5.6 or 10 mg/kg), or the less selective but clinically available 5-HT1B/1D receptor agonist, zolmitriptan (10 mg/kg), on methamphetamine self-administration both before and after a 21-day forced abstinence period during which the rats remained in their home cages.

Results: The inverted U-shaped, methamphetamine dose-response function for intake on the fixed ratio 5 schedule was shifted downward by CP 94,253 both before and after abstinence. The CP 94,253-induced decrease in methamphetamine intake was replicated in rats tested on a variable ratio 5 schedule, and the 5-HT1B receptor antagonist SB 224,289 (10 mg/kg) reversed this effect. CP 94,253 also attenuated methamphetamine intake on a progressive ratio schedule both pre- and postabstinence. Similarly, zolmitriptan attenuated methamphetamine intake on a variable ratio 5 schedule both pre- and postabstinence, and the latter effect was sustained after each of 2 more treatments given every 2 to 3 days prior to daily sessions.

Conclusions: Unlike the abstinence-dependent effect of 5-HT1B receptor agonists on cocaine intake reported previously, both CP 94,253 and zolmitriptan decreased methamphetamine intake regardless of abstinence. These findings suggest that 5-HT1B receptor agonists may have clinical efficacy for psychostimulant use disorders.

Date Created
2017-04-22
Agent

In Silico Identification and in Vivo Validation of miR-495 as a Novel Regulator of Motivation for Cocaine That Targets Multiple Addiction-Related Networks in the Nucleus Accumbens

128014-Thumbnail Image.png
Description

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and are implicated in the etiology of several neuropsychiatric disorders, including substance use disorders (SUDs). Using in silico genome-wide sequence analyses, we identified miR-495 as a miRNA whose predicted targets are

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and are implicated in the etiology of several neuropsychiatric disorders, including substance use disorders (SUDs). Using in silico genome-wide sequence analyses, we identified miR-495 as a miRNA whose predicted targets are significantly enriched in the Knowledgebase for Addiction Related Genes (ARG) database (KARG; http://karg.cbi.pku.edu.cn). This small non-coding RNA is also highly expressed within the nucleus accumbens (NAc), a pivotal brain region underlying reward and motivation. Using luciferase reporter assays, we found that miR-495 directly targeted the 3′UTRs of Bdnf, Camk2a and Arc. Furthermore, we measured miR-495 expression in response to acute cocaine in mice and found that it is downregulated rapidly and selectively in the NAc, along with concomitant increases in ARG expression. Lentiviral-mediated miR-495 overexpression in the NAc shell (NAcsh) not only reversed these cocaine-induced effects but also downregulated multiple ARG mRNAs in specific SUD-related biological pathways, including those that regulate synaptic plasticity. miR-495 expression was also downregulated in the NAcsh of rats following cocaine self-administration. Most importantly, we found that NAcsh miR-495 overexpression suppressed the motivation to self-administer and seek cocaine across progressive ratio, extinction and reinstatement testing, but had no effect on food reinforcement, suggesting that miR-495 selectively affects addiction-related behaviors. Overall, our in silico search for post-transcriptional regulators identified miR-495 as a novel regulator of multiple ARGs that have a role in modulating motivation for cocaine.

Date Created
2017-01-13
Agent

The role of the biogenic amine tyramine in latent inhibition learning in the honey bee, Apis mellifera

155638-Thumbnail Image.png
Description
Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith

Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith BH (submitted)). The locus containing the AmTYR1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. The Smith lab has been able to show a correlation between learning and the AmTYR1 receptor gene through pharmacological inhibition of the receptor. In order to further confirm this finding, experiments were designed to test how honey bees learn with this receptor knocked out. Here this G-protein coupled receptor for the biogenic amine tyramine is implemented as an important factor underlying latent inhibition in honey bees. It is shown that double-stranded RNA (dsRNA) and Dicer-substrate small interfering RNA (dsiRNA) that are targeted to disrupt the tyramine receptors specifically affects latent inhibition but not excitatory associative conditioning. The results therefore identify a distinct reinforcement pathway for latent inhibition in insects.
Date Created
2017
Agent

Genetic markers of a predisposition to lumbar disc degeneration in young adults

154953-Thumbnail Image.png
Description
Intervertebral Disc Degeneration (IVDD) is a complex phenomenon characterizing the desiccation and structural compromise of the primary joint in the human spine. The intervertebral disc (IVD) serves to connect vertebral bodies, cushion shock, and allow for flexion and extension of

Intervertebral Disc Degeneration (IVDD) is a complex phenomenon characterizing the desiccation and structural compromise of the primary joint in the human spine. The intervertebral disc (IVD) serves to connect vertebral bodies, cushion shock, and allow for flexion and extension of the vertebral column. Often presenting in the 4th or 5th decades of life as low back pain, this disease was originally believed to be the result of natural “wear and tear” coupled with repetitive mechanical insult, and as such most studies focus on patients between 40 and 50 years of age. Research over the past two decades, however, has demonstrated that environmental factors have only a modest effect on disc degeneration, with genetic influences playing a much more substantial role. Extensive research has focused on this process, though definitive risk factors and a clear pathophysiology have proven elusive. The aim of this study was to assemble a cohort of patients exhibiting definitive signs of degeneration who were well below the average age of presentation, with minimal or no exposure to suspected environmental risk factors and to conduct a targeted genome analysis in an attempt to elucidate a common genetic component. Through whole genome sequencing and analysis, the results corroborated findings in a previous study, as well as demonstrated a potential connection and influence between mutations found in IVD structural or functional genes, and the provocation of IVDD. Though the sample size was limited in scale and age, these findings suggest that further IVDD research into the association of variants in collagen, aggrecan and the insulin-like growth factor receptor genes of young patients with an early presentation of disc degeneration and minimal exposure to suspected risk factors is merited.
Date Created
2016
Agent