Investigation of the Atomic-Level Response of Aromatic Polymers to High Pressure via In Situ Energy Dispersive X-ray Diffraction Experiments
Description
Aromatic polymers, with benzene-like rings in their main chains, include materials such as polyurea, an amorphous elastomer capable of dissipating large amounts of energy under dynamic loading, which makes it a promising coating for defensive systems. Although computational research exists that investigates the atomic-level response of polyurea and other amorphous aromatic polymers to extreme conditions, there is little experimental work to validate these models 1) at the atomic-scale and 2) under high pressures characteristic of extreme dynamic loading. Understanding structure-property relationships at the atomic-level is important for polymers, considering many of them undergo pressure and temperature-induced structural transformations, which must be understood to formulate accurate predictive models. This work aims to gain a deeper understanding of the high-pressure structural response of aromatic polymers at the atomic-level, with emphasis into the mechanisms associated with high-pressure transformations. Hence, atomic-level structural data at high pressures was obtained in situ via multiangle energy dispersive X-ray diffraction (EDXD) experiments at the Advanced Photon Source (APS) for polyurea and another amorphous aromatic polymer, polysulfone, chosen as a reference due to its relatively simple structure. Pressures up to 6 GPa were applied using a Paris Edinburgh (PE) hydraulic press at room temperature. Select polyurea samples were also heated to 277 °C at 6 GPa. The resulting structure factors and pair distribution functions, along with molecular dynamics simulations of polyurea provided by collaborators, suggest that the structures of both polymers are stable up to 6 GPa, aside from reductions in free-volume between polymer backbones. As higher pressures (≲ 32 GPa) were applied using diamond anvils in combination with the PE press, indications of structural transformations were observed in both polymers that appear similar in nature to the sp2-sp3 hybridization in compressed carbon. The transformation occurs gradually up to at least ~ 26 GPa in PSF, while it does not progress past ~ 15 GPa in polyurea. The changes are largely reversible, especially in polysulfone, consistent with pressure-driven, reversible graphite-diamond transformations in the absence of applied temperature. These results constitute some of the first in situ observations of the mechanisms that drive pressure-induced structural transformations in aromatic polymers.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Agent
- Author (aut): Eastmond, Tyler
- Thesis advisor (ths): Peralta, Pedro
- Committee member: Hoover, Christian
- Committee member: Hrubiak, Rostislav
- Committee member: Mignolet, Marc
- Committee member: Oswald, Jay
- Publisher (pbl): Arizona State University