Comprehensive Framework Based on Dynamic and Steady State Analysis to Evaluate Power System Resilience Against Natural Calamities

171894-Thumbnail Image.png
Description
Power system robustness against high impact low probability events is becoming a major concern. About 90% of US power outages reported in the last three decades are due to Hurricanes and tropical storms. Various works of literature are focused on

Power system robustness against high impact low probability events is becoming a major concern. About 90% of US power outages reported in the last three decades are due to Hurricanes and tropical storms. Various works of literature are focused on modelling the resilience framework against hurricanes. To depict distinct phases of a system response during these disturbances, an aggregated trapezoid model is derived from the conventional trapezoid model and proposed in this work. The model is analytically investigated for transmission system performance, based on which resiliency metrics are developed for the same.A probabilistic-based Monte Carlo Simulations (MCS) approach has been proposed in this work to incorporate the stochastic nature of the power system and hurricane uncertainty. Furthermore, the system's resilience to hurricanes is evaluated on the modified reliability test system (RTS), which is provided in this work, by performing steady-state and dynamic security assessment incorporating protection modelling and corrective action schemes using the Siemens Power System Simulator for Engineering (PSS®E) software. Based on the results of steady-state (both deterministic and stochastic approach) and dynamic (both deterministic and stochastic approach) analysis, resilience metrics are quantified. Finally, this work highlights the interdependency of operational and infrastructure resilience as they cannot be considered discrete characteristics of the system. The objective of this work is to incorporate dynamic analysis and stochasticity in the resilience evaluation for a wind penetrated power system.
Date Created
2022
Agent