Addressing Efficiency and Reliability Challenges in Natural Language Processing

193413-Thumbnail Image.png
Description
Recently developed large language models have achieved remarkable success on a wide range of natural language tasks. Furthermore, they have been shown to possess an impressive ability to generate fluent and coherent text. Despite all the notable abilities of these

Recently developed large language models have achieved remarkable success on a wide range of natural language tasks. Furthermore, they have been shown to possess an impressive ability to generate fluent and coherent text. Despite all the notable abilities of these models, there exist several efficiency and reliability related challenges. For example, they are vulnerable to a phenomenon called 'hallucination' in which they generate text that is not factually correct and they also have a large number of parameters which makes their inference slow and computationally expensive. With the objective of taking a step closer towards further enabling the widespread adoption of the Natural Language Processing (NLP) systems, this dissertation studies the following question: how to effectively address the efficiency and reliability related concerns of the NLP systems? Specifically, to improve the reliability of models, this dissertation first presents an approach that actively detects and mitigates the hallucinations of LLMs using a retrieval augmented methodology. Note that another strategy to mitigate incorrect predictions is abstention from answering when error is likely, i.e., selective prediction. To this end, I present selective prediction approaches and conduct extensive experiments to demonstrate their effectiveness. Building on top of selective prediction, I also present post-abstention strategies that focus on reliably increasing the coverage of a selective prediction system without considerably impacting its accuracy. Furthermore, this dissertation covers multiple aspects of improving the efficiency including 'inference efficiency' (making model inferences in a computationally efficient manner without sacrificing the prediction accuracy), 'data sample efficiency' (efficiently collecting data instances for training a task-specific system), 'open-domain QA reader efficiency' (leveraging the external knowledge efficiently while answering open-domain questions), and 'evaluation efficiency' (comparing the performance of different models efficiently). In summary, this dissertation highlights several challenges pertinent to the efficiency and reliability involved in the development of NLP systems and provides effective solutions to address them.
Date Created
2024
Agent

Implicitly Supervised Neural Question Answering

168624-Thumbnail Image.png
Description
How to teach a machine to understand natural language? This question is a long-standing challenge in Artificial Intelligence. Several tasks are designed to measure the progress of this challenge. Question Answering is one such task that evaluates a machine's ability

How to teach a machine to understand natural language? This question is a long-standing challenge in Artificial Intelligence. Several tasks are designed to measure the progress of this challenge. Question Answering is one such task that evaluates a machine's ability to understand natural language, where it reads a passage of text or an image and answers comprehension questions. In recent years, the development of transformer-based language models and large-scale human-annotated datasets has led to remarkable progress in the field of question answering. However, several disadvantages of fully supervised question answering systems have been observed. Such as generalizing to unseen out-of-distribution domains, linguistic style differences in questions, and adversarial samples. This thesis proposes implicitly supervised question answering systems trained using knowledge acquisition from external knowledge sources and new learning methods that provide inductive biases to learn question answering. In particular, the following research projects are discussed: (1) Knowledge Acquisition methods: these include semantic and abductive information retrieval for seeking missing knowledge, a method to represent unstructured text corpora as a knowledge graph, and constructing a knowledge base for implicit commonsense reasoning. (2) Learning methods: these include Knowledge Triplet Learning, a method over knowledge graphs; Test-Time Learning, a method to generalize to an unseen out-of-distribution context; WeaQA, a method to learn visual question answering using image captions without strong supervision; WeaSel, weakly supervised method for relative spatial reasoning; and a new paradigm for unsupervised natural language inference. These methods potentially provide a new research direction to overcome the pitfalls of direct supervision.
Date Created
2022
Agent