Electrocatalytic Comparison of [FeFe]-Hydrogenases
Description
Oxidoreductases catalyze transformations important in both bioenergetics and microbial technologies. Nonetheless, questions remain about how to tune them to modulate properties such as preference for catalysis in the oxidative or reductive direction, the potential range of activity, or coupling of multiple reactions. Using protein film electrochemistry, the features that control these properties are defined by comparing the activities of five [FeFe]-hydrogenases and two thiosulfate reductases. Although [FeFe]-hydrogenases are largely described as hydrogen evolution catalysts, the catalytic bias of [FeFe]-hydrogenases, i.e. the ratio of maximal reductive to oxidative activities, spans more than six orders of magnitude. At one extreme, two [FeFe]-hdyrogenases, Clostridium pasteuriaunum HydAII and Clostridium symbiosum HydY, are far more active for hydrogen oxidation than hydrogen evolution. On the other extreme, Clostridium pasteurianum HydAI and Clostridium acetobutylicum HydA1 have a neutral bias, in which both proton reduction and hydrogen oxidation are efficient. By investigating a collection of site-directed mutants, it is shown that the catalytic bias of [FeFe]-hydrogenases is not trivially correlated with the identities of residues in the primary or secondary coordination sphere. On the other hand, the catalytic bias of Clostridium acetobutylicum HydAI can be modulated via mutation of an amino acid residue coordinating the terminal [FeS] cluster. Simulations suggest that this change in catalytic bias may be linked to the reduction potential of the cluster.
Two of the enzymes examined in this work, Clostridium pasteurianum HydAIII and Clostridium symbiosum HydY, display novel catalytic properties. HydY is exclusively a hydrogen oxidizing catalyst, and it couples this activity to peroxide reduction activity at a rubrerythrin center in the same enzyme. On the other hand, CpIII operates only in a narrow potential window, inactivating at oxidizing potentials. This suggests it plays a novel physiological role that has not yet been identified. Finally, the electrocatalytic properties of Pyrobaculum aerophilum thiosulfate reductase with either Mo or W in the active site are compared. In both cases, the onset of catalysis corresponds to reduction of the active site. Overall, the Mo enzyme is more active, and reduces thiosulfate with less overpotential.
Two of the enzymes examined in this work, Clostridium pasteurianum HydAIII and Clostridium symbiosum HydY, display novel catalytic properties. HydY is exclusively a hydrogen oxidizing catalyst, and it couples this activity to peroxide reduction activity at a rubrerythrin center in the same enzyme. On the other hand, CpIII operates only in a narrow potential window, inactivating at oxidizing potentials. This suggests it plays a novel physiological role that has not yet been identified. Finally, the electrocatalytic properties of Pyrobaculum aerophilum thiosulfate reductase with either Mo or W in the active site are compared. In both cases, the onset of catalysis corresponds to reduction of the active site. Overall, the Mo enzyme is more active, and reduces thiosulfate with less overpotential.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Agent
- Author (aut): Williams, Samuel Garrett
- Thesis advisor (ths): Jones, Anne K
- Committee member: Hayes, Mark A.
- Committee member: Trovitch, Ryan J
- Publisher (pbl): Arizona State University