Data-Driven Robust Optimization in Healthcare Applications
Description
Healthcare operations have enjoyed reduced costs, improved patient safety, and
innovation in healthcare policy over a huge variety of applications by tackling prob-
lems via the creation and optimization of descriptive mathematical models to guide
decision-making. Despite these accomplishments, models are stylized representations
of real-world applications, reliant on accurate estimations from historical data to jus-
tify their underlying assumptions. To protect against unreliable estimations which
can adversely affect the decisions generated from applications dependent on fully-
realized models, techniques that are robust against misspecications are utilized while
still making use of incoming data for learning. Hence, new robust techniques are ap-
plied that (1) allow for the decision-maker to express a spectrum of pessimism against
model uncertainties while (2) still utilizing incoming data for learning. Two main ap-
plications are investigated with respect to these goals, the first being a percentile
optimization technique with respect to a multi-class queueing system for application
in hospital Emergency Departments. The second studies the use of robust forecasting
techniques in improving developing countries’ vaccine supply chains via (1) an inno-
vative outside of cold chain policy and (2) a district-managed approach to inventory
control. Both of these research application areas utilize data-driven approaches that
feature learning and pessimism-controlled robustness.
innovation in healthcare policy over a huge variety of applications by tackling prob-
lems via the creation and optimization of descriptive mathematical models to guide
decision-making. Despite these accomplishments, models are stylized representations
of real-world applications, reliant on accurate estimations from historical data to jus-
tify their underlying assumptions. To protect against unreliable estimations which
can adversely affect the decisions generated from applications dependent on fully-
realized models, techniques that are robust against misspecications are utilized while
still making use of incoming data for learning. Hence, new robust techniques are ap-
plied that (1) allow for the decision-maker to express a spectrum of pessimism against
model uncertainties while (2) still utilizing incoming data for learning. Two main ap-
plications are investigated with respect to these goals, the first being a percentile
optimization technique with respect to a multi-class queueing system for application
in hospital Emergency Departments. The second studies the use of robust forecasting
techniques in improving developing countries’ vaccine supply chains via (1) an inno-
vative outside of cold chain policy and (2) a district-managed approach to inventory
control. Both of these research application areas utilize data-driven approaches that
feature learning and pessimism-controlled robustness.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Agent
- Author (aut): Bren, Austin
- Thesis advisor (ths): Saghafian, Soroush
- Thesis advisor (ths): Mirchandani, Pitu
- Committee member: Wu, Teresa
- Committee member: Pan, Rong
- Publisher (pbl): Arizona State University