Mechanical Behavior of Meteorites: Multiscale Characterization of the Strength and Failure Mechanism

189290-Thumbnail Image.png
Description
In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by

In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by anhydrous silicates with lesser amounts of sulfides and native Fe-Ni metals, while Gibeon is primarily composed of Fe-Ni metals with scattered inclusions of graphite and troilite. The OCs were investigated to understand their response to compressive loading, using a three-dimensional (3-D) Digital Image Correlation (DIC) technique to measure full-field deformation and strain during compression. The DIC data were also used to identify the effects of mineralogical and structural heterogeneity on crack formation and growth. Even though Aba Panu and Viñales are mineralogically similar and are both classified as L ordinary chondrites, they exhibit differences in compressive strengths due to variations in chemical compositions, microstructure, and the presence of cracks and shock veins. DIC data of Aba Panu and Viñales show a brittle failure mechanism, consistent with the crack formation and growth from pre-existing microcracks and porosity. In contrast, the Fe-Ni phases of the Gibeon meteorite deform plastically without rupture during compression, whereas during tension, plastic deformations followed by necking lead to final failure. The Gibeon DIC results showed strain concentration in the tensile gauge region along the sample edge, resulting in the initiation of new damage surfaces that propagated perpendicular to the loading direction. Finally, an in-situ low-temperature testing method of iron meteorites was developed to study the response of their unique microstructure and failure mechanism.
Date Created
2023
Agent

Health Management of Complex Systems Integrating Multisource Sensing, Nondestructive Evaluation, and Machine Learning

168296-Thumbnail Image.png
Description
Structural/system health monitoring (SHM) and prognostic health management (PHM) are vital techniques to ensure engineering system reliability and safety during the service. As multi-functionality and enhanced performance are in demand, modern engineering systems including aerospace, mechanical, and civil applications have

Structural/system health monitoring (SHM) and prognostic health management (PHM) are vital techniques to ensure engineering system reliability and safety during the service. As multi-functionality and enhanced performance are in demand, modern engineering systems including aerospace, mechanical, and civil applications have become more complex. The constituent and architectural complexity, and multisource sensing sources in modern engineering systems may limit the monitoring capabilities of conventional approaches and require more advanced SHM/PHM techniques. Therefore, a hybrid methodology that incorporates information fusion, nondestructive evaluation (NDE), machine learning (ML), and statistical analysis is needed for more effective damage diagnosis/prognosis and system safety management.This dissertation presents an automated aviation health management technique to enable proactive safety management for both aircraft and national airspace system (NAS). A real-time, data-driven aircraft safety monitoring technique using ML models and statistical models is developed to enable an early-stage upset detection capability, which can improve pilot’s situational awareness and provide a sufficient safety margin. The detection accuracy and computational efficiency of the developed monitoring techniques is validated using commercial unlabeled flight data recorder (FDR) and reported accident FDR dataset. A stochastic post-upset prediction framework is developed using a high-fidelity flight dynamics model to predict the post-impacts in both aircraft and air traffic system. Stall upset scenarios that are most likely occurred during loss of control in-flight (LOC-I) operation are investigated, and stochastic flight envelopes and risk region are predicted to quantify their severities. In addition, a robust, automatic damage diagnosis technique using ultrasonic Lamb waves and ML models is developed to effectively detect and classify fatigue damage modes in composite structures. The dispersion and propagation characteristics of the Lamb waves in a composite plate are investigated. A deep autoencoder-based diagnosis technique is proposed to detect fatigue damage using anomaly detection approach and automatically extract damage sensitive features from the waves. The patterns in the features are then further analyzed using outlier detection approach to classify the fatigue damage modes. The developed diagnosis technique is validated through an in-situ fatigue tests with periodic active sensing. The developed techniques in this research are expected to be integrated with the existing safety strategies to enhance decision making process for improving engineering system safety without affecting the system’s functions.
Date Created
2021
Agent

Novel Methodology for Atomistically Informed Multiscale Modeling of Advanced Composites

156272-Thumbnail Image.png
Description
With the maturity of advanced composites as feasible structural materials for various applications there is a critical need to solve the challenge of designing these material systems for optimal performance. However, determining superior design methods requires a deep understanding of

With the maturity of advanced composites as feasible structural materials for various applications there is a critical need to solve the challenge of designing these material systems for optimal performance. However, determining superior design methods requires a deep understanding of the material-structure properties at various length scales. Due to the length-scale dependent behavior of advanced composites, multiscale modeling techniques may be used to describe the dominant mechanisms of damage and failure in these material systems. With polymer matrix fiber composites and nanocomposites it becomes essential to include even the atomic length scale, where the resin-hardener-nanofiller molecules interact, in the multiscale modeling framework. Additionally, sources of variability are also critical to be included in these models due to the important role of uncertainty in advance composite behavior. Such a methodology should be able to describe length scale dependent mechanisms in a computationally efficient manner for the analysis of practical composite structures.

In the research presented in this dissertation, a comprehensive nano to macro multiscale framework is developed for the mechanical and multifunctional analysis of advanced composite materials and structures. An atomistically informed statistical multiscale model is developed for linear problems, to estimate and scale elastic properties of carbon fiber reinforced polymer composites (CFRPs) and carbon nanotube (CNT) enhanced CFRPs using information from molecular dynamics simulation of the resin-hardener-nanofiller nanoscale system. For modeling inelastic processes, an atomistically informed coupled damage-plasticity model is developed using the framework of continuum damage mechanics, where fundamental nanoscale covalent bond disassociation information is scaled up as a continuum scale damage identifying parameter. This damage model is coupled with a nanocomposite microstructure generation algorithm to study the sub-microscale damage mechanisms in CNT/CFRP microstructures. It is further integrated in a generalized method of cells (GMC) micromechanics model to create a low-fidelity computationally efficient nonlinear multiscale method with imperfect interfaces between the fiber and matrix, where the interface behavior is adopted from nanoscale MD simulations. This algorithm is used to understand damage mechanisms in adhesively bonded composite joints as a case study for the comprehensive nano to macroscale structural analysis of practical composites structures. At each length scale sources of variability are identified, characterized, and included in the multiscale modeling framework.
Date Created
2018
Agent