Understanding the Effect of Epidural Steroid Injection in Lower Back Pain Using Inertial Measurement Unit Wearable Device

189237-Thumbnail Image.png
Description
Low back pain (LBP) is the most common symptom leading to hospitalization and medical assistance. In the US, LBP is the fifth most prevalent case for visiting hospitals. Approximately 2.06 million LBP incidents were reported during the timeline between 2004

Low back pain (LBP) is the most common symptom leading to hospitalization and medical assistance. In the US, LBP is the fifth most prevalent case for visiting hospitals. Approximately 2.06 million LBP incidents were reported during the timeline between 2004 and 2008. Globally, LBP occurrence increased by almost 200 million from 1990 to 2017. This problem is further implicated by physical and financial constraints that impact the individual’s quality of life. The medical cost exceeded $87.6 billion, and the lifetime prevalence was 84%. This indicates that the majority of people in the US will experience this symptom. Also, LBP limits Activities of Daily Living (ADL) and possibly affects the gait and postural stability. Prior studies indicated that LBP patients have slower gait speed and postural instability. To alleviate this symptom, the epidural injection is prescribed to treat pain and improve mobility function. To evaluate the effectiveness of LBP epidural injection intervention, gait and posture stability was investigated before and after the injection. While these factors are the fundamental indicator of LBP improvement, ADL is an element that needs to be significantly considered. The physical activity level depicts a person’s dynamic movement during the day, it is essential to gather activity level that supports monitoring chronic conditions, such as LBP, osteoporosis, and falls. The objective of this study was to assess the effects of Epidural Steroid Injection (ESI) on LBP and related gait and postural stability in the pre and post-intervention status. As such, the second objective was to assess the influence of ESI on LBP, and how it influences the participant’s ADL physical activity level. The results indicated that post-ESI intervention has significantly improved LBP patient’s gait and posture stability, however, there was insufficient evidence to determine the significant disparity in the physical activity levels. In conclusion, ESI depicts significant positive effects on LBP patients’ gait and postural parameters, however, more verification is required to indicate a significant effect on ADL physical activity levels.
Date Created
2023
Agent

Effects of Load and Walking Conditions on Dynamic Stability Using Longitudinal Wearable Data

155893-Thumbnail Image.png
Description
Fall accident is a significant problem associated with our society both in terms of economic losses and human suffering [1]. In 2016, more than 800,000 people were hospitalized and over 33,000 deaths resulted from falling. Health costs associated with falling

Fall accident is a significant problem associated with our society both in terms of economic losses and human suffering [1]. In 2016, more than 800,000 people were hospitalized and over 33,000 deaths resulted from falling. Health costs associated with falling in 2016 yielded at 33% of total medical expenses in the US- mounting to approximately $31 billion per year. As such, it is imperative to find intervention strategies to mitigate deaths and injuries associated with fall accidents. In order for this goal to be realized, it is necessary to understand the mechanisms associated with fall accidents and more specifically, the movement profiles that may represent the cogent behavior of the locomotor system that may be amendable to rehabilitation and intervention strategies. In this light, this Thesis is focused on better understanding the factors influencing dynamic stability measure (as measured by Lyapunov exponents) during over-ground ambulation utilizing wireless Inertial Measurement Unit (IMU).

Four pilot studies were conducted: the First study was carried out to verify if IMU system was sophisticated enough to determine different load-carrying conditions. Second, to test the effects of walking inclinations, three incline levels on gait dynamic stability were examined. Third, tested whether different sections from the total gait cycle can be stitched together to assess LDS using the laboratory collected data. Finally, the fourth study examines the effect of “stitching” the data on dynamic stability measure from a longitudinally assessed (3-day continuous data collection) data to assess the effects of free-range data on assessment of dynamic stability.

Results indicated that load carrying significantly influenced dynamic stability measure but not for the floor inclination levels – indicating that future use of such measure should further implicate normalization of dynamic stability measures associated with different activities and terrain conditions. Additionally, stitching method was successful in obtaining dynamic stability measure utilizing free-living IMU data.
Date Created
2017
Agent