Development of Diamond Devices for High Power, RF and Harsh Environments

168525-Thumbnail Image.png
Description
Diamond as a wide-bandgap (WBG) semiconductor material has distinct advantages for power electronics applications over Si and other WBG materials due to its high critical electric field (> 10 MV/cm), high electron and hole mobility (??=4500 cm2/V-s, ??=3800 cm2/V-s), high

Diamond as a wide-bandgap (WBG) semiconductor material has distinct advantages for power electronics applications over Si and other WBG materials due to its high critical electric field (> 10 MV/cm), high electron and hole mobility (??=4500 cm2/V-s, ??=3800 cm2/V-s), high thermal conductivity (~22 W/cm-K) and large bandgap (5.47 eV). Owing to its remarkable properties, the application space of WBG materials has widened into areas requiring very high current, operating voltage and temperature. Remarkable progress has been made in demonstrating high breakdown voltage (>10 kV), ultra-high current density (> 100 kA/cm2) and ultra-high temperature (~1000oC) diamond devices, giving further evidence of diamond’s huge potential. However, despite the great success, fabricated diamond devices have not yet delivered diamond’s true potential. Some of the main reasons are high dopant activation energies, substantial bulk defect and trap densities, high contact resistance, and high leakage currents. A lack of complete understanding of the diamond specific device physics also impedes the progress in correct design approaches. The main three research focuses of this work are high power, high frequency and high temperature. Through the design, fabrication, testing, analysis and modeling of diamond p-i-n and Schottky diodes a milestone in diamond research is achieved and gain important theoretical understanding. In particular, a record highest current density in diamond diodes of ~116 kA/cm2 is demonstrated, RF characterization of diamond diodes is performed from 0.1 GHz to 25 GHz and diamond diodes are successfully tested in extreme environments of 500oC and ~93 bar of CO2 pressure. Theoretical models are constructed analytically and inii Silvaco ATLAS including incomplete ionization and hopping mobility to explain space charge limited current phenomenon, effects of traps and Mott-Gurney dominated diode ???. A new interpretation of the Baliga figure of merit for WBG materials is also formulated and a new cubic relationship between ??? and breakdown voltage is established. Through Silvaco ATLAS modeling, predictions on the power limitation of diamond diodes in receiver-protector circuits is made and a range of self-heating effects is established. Poole-Frenkel emission and hopping conduction models are also utilized to analyze high temperature (500oC) leakage behavior of diamond diodes. Finally, diamond JFET simulations are performed and designs are proposed for high temperature – extreme environment applications.
Date Created
2022
Agent

Applications of kinetic inductance: parametric amplifier & phase shifter, 2DEG coupled co-planar structures & microstrip to slotline transition at RF frequencies

154586-Thumbnail Image.png
Description
Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by

Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by the electric and magnetic fields and is often limited by the number of turns of the coil. Kinetic inductance on the other hand is inversely proportional to the density of electrons or holes that exert inertia, the unit mass of the charge carriers and the momentum relaxation time of these charge carriers, all of which can be varied merely by modifying the material properties. Highly sensitive and broadband signal amplifiers often broaden the field of study in astrophysics. Quantum-noise limited travelling wave kinetic inductance parametric amplifiers offer a noise figure of around 0.5 K ± 0.3 K as compared to 20 K in HEMT signal amplifiers and can be designed to operate to cover the entire W-band (75 GHz – 115 GHz).The research cumulating to this thesis involves applying and exploiting kinetic inductance properties in designing a W-band orthogonal mode transducer, quadratic gain phase shifter with a gain of ~49 dB over a meter of microstrip transmission line. The phase shifter will help in measuring the maximum amount of phase shift ∆ϕ_max (I) that can be obtained from half a meter transmission line which helps in predicting the gain of a travelling wave parametric amplifier. In another project, a microstrip to slot line transition is designed and optimized to operate at 150 GHz and 220 GHz frequencies, that is used as a part of horn antenna coupled microwave kinetic inductance detector proposed to operate from 138 GHz to 250 GHz. In the final project, kinetic inductance in a 2D electron gas (2DEG) is explored by design, simulation, fabrication and experimentation. A transmission line model of a 2DEG proposed by Burke (1999), is simulated and verified experimentally by fabricating a capacitvely coupled 2DEG mesa structure. Low temperature experiments were done at 77 K and 10 K with photo-doping the 2DEG. A circuit model of a 2DEG coupled co-planar waveguide model is also proposed and simulated.
Date Created
2016
Agent