Privacy-preserving mobile crowd sensing
Description
The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile Crowd Sensing (MCS) from concept to reality. MCS aims to outsource sensing data collection to mobile users and it could revolutionize the traditional ways of sensing data collection and processing. In the meantime, cloud computing provides cloud-backed infrastructures for mobile devices to provision their capabilities with network access. With enormous computational and storage resources along with sufficient bandwidth, it functions as the hub to handle the sensing service requests from sensing service consumers and coordinate sensing task assignment among eligible mobile users to reach a desired quality of sensing service. This paper studies the problem of sensing task assignment to mobile device owners with specific spatio-temporal traits to minimize the cost and maximize the utility in MCS while adhering to QoS constraints. Greedy approaches and hybrid solutions combined with bee algorithms are explored to address the problem.
Moreover, the privacy concerns arise with the widespread deployment of MCS from both the data contributors and the sensing service consumers. The uploaded sensing data, especially those tagged with spatio-temporal information, will disclose the personal information of the data contributors. In addition, the sensing service requests can reveal the personal interests of service consumers. To address the privacy issues, this paper constructs a new framework named Privacy-Preserving Mobile Crowd Sensing (PP-MCS) to leverage the sensing capabilities of ubiquitous mobile devices and cloud infrastructures. PP-MCS has a distributed architecture without relying on trusted third parties for privacy-preservation. In PP-MCS, the sensing service consumers can retrieve data without revealing the real data contributors. Besides, the individual sensing records can be compared against the aggregation result while keeping the values of sensing records unknown, and the k-nearest neighbors could be approximately identified without privacy leaks. As such, the privacy of the data contributors and the sensing service consumers can be protected to the greatest extent possible.
Moreover, the privacy concerns arise with the widespread deployment of MCS from both the data contributors and the sensing service consumers. The uploaded sensing data, especially those tagged with spatio-temporal information, will disclose the personal information of the data contributors. In addition, the sensing service requests can reveal the personal interests of service consumers. To address the privacy issues, this paper constructs a new framework named Privacy-Preserving Mobile Crowd Sensing (PP-MCS) to leverage the sensing capabilities of ubiquitous mobile devices and cloud infrastructures. PP-MCS has a distributed architecture without relying on trusted third parties for privacy-preservation. In PP-MCS, the sensing service consumers can retrieve data without revealing the real data contributors. Besides, the individual sensing records can be compared against the aggregation result while keeping the values of sensing records unknown, and the k-nearest neighbors could be approximately identified without privacy leaks. As such, the privacy of the data contributors and the sensing service consumers can be protected to the greatest extent possible.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Agent
- Thesis advisor (ths): Wang, Zhijie
- Committee member: Xue, Guoliang
- Committee member: Sen, Arunabha
- Committee member: Li, Jing
- Publisher (pbl): Arizona State University