On 20 August 2007, in Frazer v. Schlegel, the United States Court of Appeals for the Federal Circuit decided that researchers Ian Frazer and Jian Zhou owned the rights to the vaccine patent for Human Papillomavirus, or HPV, instead of…
On 20 August 2007, in Frazer v. Schlegel, the United States Court of Appeals for the Federal Circuit decided that researchers Ian Frazer and Jian Zhou owned the rights to the vaccine patent for Human Papillomavirus, or HPV, instead of a research team led by Richard Schlegel. Frazer v. Schlegel reversed the decision that the Board of Patent Appeals and Interferences had previously made, awarding the patent to Schlegel on the basis that Frazer’s patent application contained inaccurate science. However, once appealed, the Federal Circuit judges found Frazer’s science to be accurate, granting him rights to the vaccine patent. In 2006, the US Food and Drug Administration, or FDA, approved the first HPV vaccine, which has since been effective in protecting women from cervical cancer by up to ninety-seven percent if they were vaccinated before contracting HPV. The Circuit’s decision gave Frazer ownership of the patent for the HPV vaccine, which physicians have administered over 120 million doses of to people in the US.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In 2006, United States pharmaceutical company Merck released the Gardasil vaccination series, which protected recipients against four strains of Human Papillomaviruses, or HPV. HPV is a sexually transmitted infection which may be asymptomatic or cause symptoms such as genital warts,…
In 2006, United States pharmaceutical company Merck released the Gardasil vaccination series, which protected recipients against four strains of Human Papillomaviruses, or HPV. HPV is a sexually transmitted infection which may be asymptomatic or cause symptoms such as genital warts, and is linked to cervical, vaginal, vulvar, anal, penile, head, neck, and face cancers. In 2006, based on research conducted by researchers Ian Frazer and Jian Zhou in the 1990s, Merck released a four-strain version of Gardasil, which protected boys and girls aged nine and older against the major HPV strains HPV-6, HPV-11, HPV-16, and HPV-18. In 2014, Merck released Gardasil 9, a nine-strain version that protected from the original four HPV strains plus strains HPV-31, HPV-33, HPV-45, and HPV-58. Gardasil is a preventative measure and reduces the risk of contracting HPV and HPV-related cancers by up to ninety-seven percent.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Ultrasound B-mode imaging is an increasingly significant medical imaging modality for clinical applications. Compared to other imaging modalities like computed tomography (CT) or magnetic resonance imaging (MRI), ultrasound imaging has the advantage of being safe, inexpensive, and portable. While two…
Ultrasound B-mode imaging is an increasingly significant medical imaging modality for clinical applications. Compared to other imaging modalities like computed tomography (CT) or magnetic resonance imaging (MRI), ultrasound imaging has the advantage of being safe, inexpensive, and portable. While two dimensional (2-D) ultrasound imaging is very popular, three dimensional (3-D) ultrasound imaging provides distinct advantages over its 2-D counterpart by providing volumetric imaging, which leads to more accurate analysis of tumor and cysts. However, the amount of received data at the front-end of 3-D system is extremely large, making it impractical for power-constrained portable systems.
In this thesis, algorithm and hardware design techniques to support a hand-held 3-D ultrasound imaging system are proposed. Synthetic aperture sequential beamforming (SASB) is chosen since its computations can be split into two stages, where the output generated of Stage 1 is significantly smaller in size compared to the input. This characteristic enables Stage 1 to be done in the front end while Stage 2 can be sent out to be processed elsewhere.
The contributions of this thesis are as follows. First, 2-D SASB is extended to 3-D. Techniques to increase the volume rate of 3-D SASB through a new multi-line firing scheme and use of linear chirp as the excitation waveform, are presented. A new sparse array design that not only reduces the number of active transducers but also avoids the imaging degradation caused by grating lobes, is proposed. A combination of these techniques increases the volume rate of 3-D SASB by 4\texttimes{} without introducing extra computations at the front end.
Next, algorithmic techniques to further reduce the Stage 1 computations in the front end are presented. These include reducing the number of distinct apodization coefficients and operating with narrow-bit-width fixed-point data. A 3-D die stacked architecture is designed for the front end. This highly parallel architecture enables the signals received by 961 active transducers to be digitalized, routed by a network-on-chip, and processed in parallel. The processed data are accumulated through a bus-based structure. This architecture is synthesized using TSMC 28 nm technology node and the estimated power consumption of the front end is less than 2 W.
Finally, the Stage 2 computations are mapped onto a reconfigurable multi-core architecture, TRANSFORMER, which supports different types of on-chip memory banks and run-time reconfigurable connections between general processing elements and memory banks. The matched filtering step and the beamforming step in Stage 2 are mapped onto TRANSFORMER with different memory configurations. Gem5 simulations show that the private cache mode generates shorter execution time and higher computation efficiency compared to other cache modes. The overall execution time for Stage 2 is 14.73 ms. The average power consumption and the average Giga-operations-per-second/Watt in 14 nm technology node are 0.14 W and 103.84, respectively.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
As the demand for spectrum sharing between radar and communications systems is steadily increasing, the coexistence between the two systems is a growing and very challenging problem. Radar tracking in the presence of strong communications interference can result in…
As the demand for spectrum sharing between radar and communications systems is steadily increasing, the coexistence between the two systems is a growing and very challenging problem. Radar tracking in the presence of strong communications interference can result in low probability of detection even when sequential Monte Carlo
tracking methods such as the particle filter (PF) are used that better match the target kinematic model. In particular, the tracking performance can fluctuate as the power level of the communications interference can vary dynamically and unpredictably.
This work proposes to integrate the interacting multiple model (IMM) selection approach with the PF tracker to allow for dynamic variations in the power spectral density of the communications interference. The model switching allows for a necessary transition between different communications interference power spectral density (CI-PSD) values in order to reduce prediction errors. Simulations demonstrate the high performance of the integrated approach with as many as six dynamic CI-PSD value changes during the target track. For low signal-to-interference-plus-noise ratios, the derivation for estimating the high power levels of the communications interference is provided; the estimated power levels would be dynamically used in the IMM when integrated with a track-before-detect filter that is better matched to low SINR tracking applications.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)