Characterization of atmospheric organic matter and its processing by fogs and clouds

153286-Thumbnail Image.png
Description
The atmosphere contains a substantial amount of water soluble organic material, yet despite years of efforts, little is known on the structure, composition and properties of this organic matter. Aqueous phase processing by fogs and clouds of the gas and

The atmosphere contains a substantial amount of water soluble organic material, yet despite years of efforts, little is known on the structure, composition and properties of this organic matter. Aqueous phase processing by fogs and clouds of the gas and particulate organic material is poorly understood despite the importance for air pollution and climate. On one hand, gas phase species can be processed by fog/cloud droplets to form lower volatility species, which upon droplet evaporation lead to new aerosol mass, while on the other hand larger nonvolatile material can be degraded by in cloud oxidation to smaller molecular weight compounds and eventually CO2.

In this work High Performance Size Exclusion Chromatography coupled with inline organic carbon detection (SEC-DOC), Diffusion-Ordered Nuclear Magnetic Resonance spectroscopy (DOSY-NMR) and Fluorescence Excitation-Emission Matrices (EEM) were used to characterize molecular weight distribution, functionality and optical properties of atmospheric organic matter. Fogs, aerosols and clouds were studied in a variety of environments including Central Valley of California (Fresno, Davis), Pennsylvania (Selinsgrove), British Columbia (Whistler) and three locations in Norway. The molecular weight distributions using SEC-DOC showed smaller molecular sizes for atmospheric organic matter compared to surface waters and a smaller material in fogs and clouds compared to aerosol particles, which is consistent with a substantial fraction of small volatile gases that partition into the aqueous phase. Both, cloud and aerosol samples presented a significant fraction (up to 21% of DOC) of biogenic nanoscale material. The results obtained by SEC-DOC were consistent with DOSY-NMR observations.

Cloud processing of organic matter has also been investigated by combining field observations (sample time series) with laboratory experiments under controlled conditions. Observations revealed no significant effect of aqueous phase chemistry on molecular weight distributions overall although during cloud events, substantial differences were apparent between organic material activated into clouds compared to interstitial material. Optical properties on the other hand showed significant changes including photobleaching and an increased humidification of atmospheric material by photochemical aging. Overall any changes to atmospheric organic matter during cloud processing were small in terms of bulk carbon properties, consistent with recent reports suggesting fogs and clouds are too dilute to substantially impact composition.
Date Created
2014
Agent