Feasibility demonstration of a massively parallelizable near-field sensor for sub-wavelength defect detection and imaging

154298-Thumbnail Image.png
Description
To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection

To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, consisting of a remotely interrogating array of dipoles, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002.

In the present work a remotely interrogating slot antenna inside a 60nm silver slab is designed which increases the signal to noise ratio of the original system. The antenna is tuned to resonance at 600nm range by taking advantage of the plasmon resonance properties of the metal’s negative permittivity and judicious shaping of the slot element. Full-physics simulations show the capability of detecting an 8nm particle using red light illumination. The sensitivity to the λ/78 particle is attained by detecting the change induced on the antenna’s far field signature by the proximate particle, a change that is 15dB greater than the scattering signature of the particle by itself.

To verify the capabilities of this technology in a readily accessible experimental environment, a radiofrequency scale model is designed using a meta-material to mimic the optical properties of silver in the 2GHz to 5GHz range. Various approaches to the replication of the metal’s behavior are explored in a trade-off between fidelity to the metal’s natural plasmon response, desired bandwidth of the demonstration, and

ii

manufacturability of the meta-material. The simulation and experimental results successfully verify the capability of the proposed near-field sensor in sub-wavelength detection and imaging not only as a proof of concept for optical frequencies but also as a potential imaging device for radio frequencies.
Date Created
2016
Agent

Estimation of complex permittivity of silicon at 2.45 GHz microwave frequency

152463-Thumbnail Image.png
Description
Estimation of complex permittivity of arsenic-doped silicon is the primary topic of discussion in this thesis presentation. The frequency that is of interest is 2.45 GHz, frequency typically used in conventional microwave ovens. The analysis is based on closed-form analytical

Estimation of complex permittivity of arsenic-doped silicon is the primary topic of discussion in this thesis presentation. The frequency that is of interest is 2.45 GHz, frequency typically used in conventional microwave ovens. The analysis is based on closed-form analytical expressions of cylindrical symmetry. A coaxial/radial line junction with the central conductor sheathed in dielectric material, which is As-doped silicon in this case, are analyzed. Electrical and magnetic field equations governing the wave propagation in this setup are formulated by applying the necessary boundary conditions. Input admittance is computed using the fields in the device and reflection coefficient is calculated at the input. This analytical solution is matched to the reflection coefficient acquired by experiments conducted, using VNA as the input source. The contemplation is backed by simulation using High Frequency Structural Simulator, HFSS. Susceptor-assisted microwave heating has been shown to be a faster and easier method of annealing arsenic-doped silicon samples. In that study, it was noticed that the microwave power absorbed by the sample can directly be linked to the heat power required for the annealing process. It probes the validity of the statement that for arsenic-doped silicon the heating curve depends only on its sheet properties and not on the bulk as such and the results presented here gives more insight to it as to why this assumption is true. The results obtained here can be accepted as accurate since it is known that this material is highly conductive and electromagnetic waves do not penetrate in to the material beyond a certain depth, which is given by the skin depth of the material. Hall measurements and four-point-probe measurements are performed on the material in support of the above contemplation.
Date Created
2014
Agent