Prototype Decision-Making Tool to Facilitate Patient Selection of a Refractive Eye Surgery Modality

165029-Thumbnail Image.png
Description
To address the need for a patient decision aid for refractive eye surgery, EyeChoose, a web-based tool, was developed. The tool provides patient education, assists in selection of a specific surgical modality, generates customized recommendations, and links patients to local

To address the need for a patient decision aid for refractive eye surgery, EyeChoose, a web-based tool, was developed. The tool provides patient education, assists in selection of a specific surgical modality, generates customized recommendations, and links patients to local surgeons, explicitly targeting the population of college students. I conducted a focus group interview for the needs assessment. I designed a scoring algorithm to provide a customized recommendation of surgical modalities based on a patient’s medical history and personal preferences. I completed a prototype implementation of the tool. Initial data from a validation study indicated that the system achieved 99.18% accuracy in its recommendation of a surgical modality. An evaluation of usefulness and usability, conducted via survey and focus group, also illustrated highly positive responses. Fourteen of sixteen statements in the survey received more than 80% of positive responses. I further examined the two statements that received less than 80% of positive responses to determine whether the responses varied by race, ethnicity, sex, and medical history. The focus group liked the application and found it useful for their needs. Their responses clarified features of the application that users liked/found beneficial and features that users did not like/did not find beneficial. These recommendations will be integrated into the tool as the next step. Future research is required to implement the tool in naturalistic settings and to examine the generalizability of the findings to other populations.
Date Created
2022-05
Agent

EHR-mediated Workflow Analysis and Optimization Framework in PreOp Settings

161760-Thumbnail Image.png
Description
Perioperative care has a direct and crucial impact on patient safety and patient outcomes, as well as the financial viability of the healthcare facility. The time pressure and workload of caring patients facing surgery are heavier than caring inpatients of

Perioperative care has a direct and crucial impact on patient safety and patient outcomes, as well as the financial viability of the healthcare facility. The time pressure and workload of caring patients facing surgery are heavier than caring inpatients of other departments. This workload raises requirements for PreOp nurses, the primary PreOp caregiver, to complete information gathering, screening, and verification tasks accurately and efficiently. EHRs (Electronic Health Record System) have evolved continuously with increasing features to meet newly raised needs and expectations. Many healthcare institutions have undergone EHR conversion since the introduction of first-generation EHRs. Thus, the need for a systematic evaluation of changed information system workflow following conversion is becoming more and more manifest. There are a growing number of methods for analyzing health information technology use. However, few studies provide and apply a standard method to understand the impact of EHR transition and inspire opportunities for improvement. This dissertation focuses on PreOp nurse’s EHR use in PreOp settings. The goals of this dissertation are to: (a) introduce a systematic framework to evaluate EHR-mediated workflow and the impact of the EHR transition; (b) understand the impact of different EHR systems on PreOp nurse’s workflow and preoperative care efficiency; (c) transform the evaluation results into practical user-centered EHR designs. This research draws on computational ethnography, cognitive engineering process and user-centered design concepts to build a practical approach for EHR transition-related workflow evaluation and optimization. Observational data were collected before and after a large-scale EHR conversion throughout Mayo Clinic’s different regional health systems. For a structured computational evaluation framework, the time-efficiency of PreOp nurses’ work were compared quantitatively by means of coding and segmenting nurses’ tasks. Interview data provided contextual information, reflecting practical challenges and opportunities before and after the EHR transition. The total case time, the time spent on EHR, and the task fragmentation were improved after converting to the new EHR system. A trend of standardization of information-related workflow and EHR transition was observed. Notably, the approach helped to identify current new system challenges and pointed out potential optimization solutions.
Date Created
2021
Agent

Exploring the use of tablet applications for emergency resuscitation practice

Description
As technology has advanced in recent years, tablet devices have started to make their way into all walks of life. Yet, many medical documentation processes still see the use of paper. Though the paper based documentation method has been shown

As technology has advanced in recent years, tablet devices have started to make their way into all walks of life. Yet, many medical documentation processes still see the use of paper. Though the paper based documentation method has been shown to be effective for some purposes, the introduction of tablet devices has the potential to make the documentation processes a lot smoother. In this thesis, tablet based documentation systems are reviewed, and based on this, a new custom application is developed that medical staff can use with ease. This new application, developed for an iPad is one where users can fully customize their own forms for different uses in the intensive care unit for resuscitation scenarios. The thesis discusses the architecture behind this application along with designing different elements of the system. Through this thesis project, the application was evaluated to see if such a complex documentation process can be easily used and created on a tablet device. The medical staff surveyed, responded positively to the use of the application and agreed that the electronic documentation usage and creation is a powerful tool that could help improve resuscitation practice by making it more efficient.
Date Created
2016
Agent

Design, development and evaluation of collaborative team training method in virtual worlds for time-critical medical procedures

152417-Thumbnail Image.png
Description
Medical students acquire and enhance their clinical skills using various available techniques and resources. As the health care profession has move towards team-based practice, students and trainees need to practice team-based procedures that involve timely management of clinical tasks and

Medical students acquire and enhance their clinical skills using various available techniques and resources. As the health care profession has move towards team-based practice, students and trainees need to practice team-based procedures that involve timely management of clinical tasks and adequate communication with other members of the team. Such team-based procedures include surgical and clinical procedures, some of which are protocol-driven. Cost and time required for individual team-based training sessions, along with other factors, contribute to making the training complex and challenging. A great deal of research has been done on medically-focused collaborative virtual reality (VR)-based training for protocol-driven procedures as a cost-effective as well as time-efficient solution. Most VR-based simulators focus on training of individual personnel. The ones which focus on providing team training provide an interactive simulation for only a few scenarios in a collaborative virtual environment (CVE). These simulators are suited for didactic training for cognitive skills development. The training sessions in the simulators require the physical presence of mentors. The problem with this kind of system is that the mentor must be present at the training location (either physically or virtually) to evaluate the performance of the team (or an individual). Another issue is that there is no efficient methodology that exists to provide feedback to the trainees during the training session itself (formative feedback). Furthermore, they lack the ability to provide training in acquisition or improvement of psychomotor skills for the tasks that require force or touch feedback such as cardiopulmonary resuscitation (CPR). To find a potential solution to overcome some of these concerns, a novel training system was designed and developed that utilizes the integration of sensors into a CVE for time-critical medical procedures. The system allows the participants to simultaneously access the CVE and receive training from geographically diverse locations. The system is also able to provide real-time feedback and is also able to store important data during each training/testing session. Finally, this study also presents a generalizable collaborative team-training system that can be used across various team-based procedures in medical as well as non-medical domains.
Date Created
2014
Agent