Dual active bridge converter with PWM control in solid state transformer application

151114-Thumbnail Image.png
Description
For the solid-state transformer (SST) application, a three-stage configuration consisting of a PWM rectifier based AC/DC stage, a dual active bridge (DAB) converter based DC/DC stage and a PWM inverter based DC/AC stage offers several advantages. For single-phase SST, the

For the solid-state transformer (SST) application, a three-stage configuration consisting of a PWM rectifier based AC/DC stage, a dual active bridge (DAB) converter based DC/DC stage and a PWM inverter based DC/AC stage offers several advantages. For single-phase SST, the instantaneous input and load power seen by the DC/DC stage varies from zero to twice the load average power at double the line frequency. Traditionally, with phase-shift control, large DAB DC link capacitors are used to handle the instantaneous power variation of the load, with the DAB converter processing only the load average power resulting in better soft-switching range and consequently high efficiency. However, the large electrolytic capacitors required adversely affect the power density and the reliability of SST. In this thesis, a PWM control is used for the DAB converter in SST, which extends the ZVS range of DAB and allows the DAB converter to handle the pulsating power while maintaining/improving efficiency. The impact of the output capacitance of switches with PWM control is discussed for practical implementation. A 40kHz, 500W DAB converter is designed and built, and the experimental results proves that the DAB converter with PWM control in SST can achieve comparable efficiency while the DC link capacitors of SST can be reduced to a value that electrolytic capacitors are not required.
Date Created
2012
Agent