Dynamic loading of substation distribution transformers: an application for use in a production grade environment

152174-Thumbnail Image.png
Description
Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the

Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability of transformers. This information can be used to load devices closer to their limits without exceeding the manufacturer specified operating limits. The maximally efficient dynamic loading of transformers requires a model that can accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). In the previous work, two kinds of thermal TOT and HST models have been studied and used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, several metrics have been applied to evaluate the model acceptability and determine the most appropriate models for using in the dynamic loading calculations. In this work, an investigation to improve the existing transformer thermal models performance is presented. Some factors that may affect the model performance such as improper fan status and the error caused by the poor performance of IEEE models are discussed. Additional methods to determine the reliability of transformer thermal models using metrics such as time constant and the model parameters are also provided. A new production grade application for real-time dynamic loading operating purpose is introduced. This application is developed by using an existing planning application, TTeMP, as a start point, which is designed for the dispatchers and load specialists. To overcome the limitations of TTeMP, the new application can perform dynamic loading under emergency conditions, such as loss-of transformer loading. It also has the capability to determine the emergency rating of the transformers for a real-time estimation.
Date Created
2013
Agent

Improving the execution time of large system simulations

151285-Thumbnail Image.png
Description
Today, the electric power system faces new challenges from rapid developing technology and the growing concern about environmental problems. The future of the power system under these new challenges needs to be planned and studied. However, due to the high

Today, the electric power system faces new challenges from rapid developing technology and the growing concern about environmental problems. The future of the power system under these new challenges needs to be planned and studied. However, due to the high degree of computational complexity of the optimization problem, conducting a system planning study which takes into account the market structure and environmental constraints on a large-scale power system is computationally taxing. To improve the execution time of large system simulations, such as the system planning study, two possible strategies are proposed in this thesis. The first one is to implement a relative new factorization method, known as the multifrontal method, to speed up the solution of the sparse linear matrix equations within the large system simulations. The performance of the multifrontal method implemented by UMFAPACK is compared with traditional LU factorization on a wide range of power-system matrices. The results show that the multifrontal method is superior to traditional LU factorization on relatively denser matrices found in other specialty areas, but has poor performance on the more sparse matrices that occur in power-system applications. This result suggests that multifrontal methods may not be an effective way to improve execution time for large system simulation and power system engineers should evaluate the performance of the multifrontal method before applying it to their applications. The second strategy is to develop a small dc equivalent of the large-scale network with satisfactory accuracy for the large-scale system simulations. In this thesis, a modified Ward equivalent is generated for a large-scale power system, such as the full Electric Reliability Council of Texas (ERCOT) system. In this equivalent, all the generators in the full model are retained integrally. The accuracy of the modified Ward equivalent is validated and the equivalent is used to conduct the optimal generation investment planning study. By using the dc equivalent, the execution time for optimal generation investment planning is greatly reduced. Different scenarios are modeled to study the impact of fuel prices, environmental constraints and incentives for renewable energy on future investment and retirement in generation.
Date Created
2012
Agent

Power system network reduction for engineering and economic analysis

151224-Thumbnail Image.png
Description
Electric power systems are facing great challenges from environmental regulations, changes in demand due to new technologies like electric vehicle, as well as the integration of various renewable energy sources. These factors taken together require the development of new tools

Electric power systems are facing great challenges from environmental regulations, changes in demand due to new technologies like electric vehicle, as well as the integration of various renewable energy sources. These factors taken together require the development of new tools to help make policy and investment decisions for the future power grid. The requirements of a network equivalent to be used in such planning tools are very different from those assumed in the development of traditional equivalencing procedures. This dissertation is focused on the development, implementation and verification of two network equivalencing approaches on large power systems, such as the Eastern Interconnection. Traditional Ward-type equivalences are a class of equivalencing approaches but this class has some significant drawbacks. It is well known that Ward-type equivalents "smear" the injections of external generators over a large number of boundary buses. For newer long-term investment applications that take into account such things as greenhouse gas (GHG) regulations and generator availability, it is computationally impractical to model fractions of generators located at many buses. A modified-Ward equivalent is proposed to address this limitation such that the external generators are moved wholesale to some internal buses based on electrical distance. This proposed equivalencing procedure is designed so that the retained-line power flows in the equivalent match those in the unreduced (full) model exactly. During the reduction process, accommodations for special system elements are addressed, including static VAr compensators (SVCs), high voltage dc (HVDC) transmission lines, and phase angle regulators. Another network equivalencing approach based on the dc power flow assumptions and the power transfer distribution factors (PTDFs) is proposed. This method, rather than eliminate buses via Gauss-reduction, aggregates buses on a zonal basis. The bus aggregation approach proposed here is superior to the existing bus aggregation methods in that a) under the base case, the equivalent-system inter-zonal power flows exactly match those calculated using the full-network-model b) as the operating conditions change, errors in line flows are reduced using the proposed bus clustering algorithm c) this method is computationally more efficient than other bus aggregation methods proposed heretofore. A critical step in achieving accuracy with a bus aggregation approach is selecting which buses to cluster together and how many clusters are needed. Clustering in this context refers to the process of partitioning a network into subsets of buses. An efficient network clustering method is proposed based on the PTDFs and the data mining techniques. This method is applied to the EI topology using the "Saguaro" supercomputer at ASU, a resource with sufficient memory and computational capability for handling this 60,000-bus and 80,000-branch system. The network equivalents generated by the proposed approaches are verified and tested for different operating conditions and promising results have been observed.
Date Created
2012
Agent

Renewable energy penetration planning for remote power grid

151097-Thumbnail Image.png
Description
Power generation in remote isolated places is a tough problem. Presently, a common source for remote generation is diesel. However, diesel generation is costly and environmental unfriendly. It is promising to replace the diesel generation with some clean and economical

Power generation in remote isolated places is a tough problem. Presently, a common source for remote generation is diesel. However, diesel generation is costly and environmental unfriendly. It is promising to replace the diesel generation with some clean and economical generation sources. The concept of renewable generation offers a solution to remote generation. This thesis focuses on evaluation of renewable generation penetration in the remote isolated grid. A small town named Coober Pedy in South Australia is set as an example. The first task is to build the stochastic models of solar irradiation and wind speed based on the local historical data. With the stochastic models, generation fluctuations and generation planning are further discussed. Fluctuation analysis gives an evaluation of storage unit size and costs. Generation planning aims at finding the relationships between penetration level and costs under constraint of energy sufficiency. The results of this study provide the best penetration level that makes the minimum energy costs. In the case of Coober Pedy, cases of wind and photovoltaic penetrations are studied. The additional renewable sources and suspended diesel generation change the electricity costs. Results show that in remote isolated grid, compared to diesel generation, renewable generation can lower the energy costs.
Date Created
2012
Agent