Disentangling the Spatial Resolution of Changes in Solvation Free Energy Using Explicit Solvent Molecular Dynamics Simulations

171872-Thumbnail Image.png
Description
Understanding solvent-mediated interactions in biomolecular systems at the molecular level is important for the development of predictive models for processes such as protein folding and ligand binding to a host biomolecule. Solvent-mediated interactions can be quantified as changes in the

Understanding solvent-mediated interactions in biomolecular systems at the molecular level is important for the development of predictive models for processes such as protein folding and ligand binding to a host biomolecule. Solvent-mediated interactions can be quantified as changes in the solvation free energy of solvated molecules. Theoretical models of solvent-mediated interactions thus need to include ensemble-averaged solute-solvent interactions. In this thesis, molecular dynamics simulations were coupled with the 3D-2PT method to decompose solvation free energies into spatially resolved local contributions. In the first project, this approach was applied to benzene derivatives to guide the development of efficient and predictive models of solvent-mediated interactions in the context of computational drug design. Specifically, the effects of carboxyl and nitro groups on solvation were studied due to their similar sterical requirements but distinct interactions with water. A system of solvation free energy arithmetics was developed and showed that non-additive contributions to the solvation free energy originate in electrostatic solute-solvent interactions, which are qualitatively reproduced by computationally efficient continuum models. In the second project, a simple model system was used to analyze hydrophilic water-mediated interactions (water-mediated hydrogen bonds), which have been previously suggested to play a key role in protein folding. Using the spatially resolved analysis of solvation free energies, the sites of bridging water molecules were identified as the primary origin of solvent-mediated forces and showed that changes in hydration shell structure can be neglected. In the third project, the analysis of solvation free energy contributions is applied to proteins in inhomogeneous electric fields to explore water-mediated contributions to protein dielectrophoresis. The results provide a potential explanation for negative dielectrophoretic forces on proteins, which have been observed experimentally but cannot be explained with previous theoretical models.
Date Created
2022
Agent

The role of protein dielectric relaxation on modulating the electron transfer process in photosynthetic reaction centers

150988-Thumbnail Image.png
Description
The photosynthetic reaction center is a type of pigment-protein complex found widely in photosynthetic bacteria, algae and higher plants. Its function is to convert the energy of sunlight into a chemical form that can be used to support other life

The photosynthetic reaction center is a type of pigment-protein complex found widely in photosynthetic bacteria, algae and higher plants. Its function is to convert the energy of sunlight into a chemical form that can be used to support other life processes. The high efficiency and structural simplicity make the bacterial reaction center a paradigm for studying electron transfer in biomolecules. This thesis starts with a comparison of the primary electron transfer process in the reaction centers from the Rhodobacter shperoides bacterium and those from its thermophilic homolog, Chloroflexus aurantiacus. Different temperature dependences in the primary electron transfer were found in these two type of reaction centers. Analyses of the structural differences between these two proteins suggested that the excess surface charged amino acids as well as a larger solvent exposure area in the Chloroflexus aurantiacus reaction center could explain the different temperature depenence. The conclusion from this work is that the electrostatic interaction potentially has a major effect on the electron transfer. Inspired by these results, a single point mutant was designed for Rhodobacter shperoides reaction centers by placing an ionizable amino acid in the protein interior to perturb the dielectrics. The ionizable group in the mutation site largely deprotonated in the ground state judging from the cofactor absorption spectra as a function of pH. By contrast, a fast charge recombination assoicated with protein dielectric relaxation was observed in this mutant, suggesting the possibility that dynamic protonation/deprotonation may be taking place during the electron transfer. The fast protein dielectric relaxation occuring in this mutant complicates the electron transfer pathway and reduces the yield of electron transfer to QA. Considering the importance of the protein dielectric environment, efforts have been made in quantifying variations of the internal field during charge separation. An analysis protocol based on the Stark effect of reaction center cofactor spectra during charge separation has been developed to characterize the charge-separated radical field acting on probe chromophores. The field change, monitored by the dynamic Stark shift, correlates with, but is not identical to, the electron transfer kinetics. The dynamic Stark shift results have lead to a dynamic model for the time-dependent dielectric that is complementary to the static dielectric asymmetry observed in past steady state experiments. Taken together, the work in this thesis emphasizes the importance of protein electrostatics and its dielectric response to electron transfer.
Date Created
2012
Agent