Performance and scaling analysis of a hypocycloid wiseman engine

152539-Thumbnail Image.png
Description
The slider-crank mechanism is popularly used in internal combustion engines to convert the reciprocating motion of the piston into a rotary motion. This research discusses an alternate mechanism proposed by the Wiseman Technology Inc. which involves replacing the crankshaft with

The slider-crank mechanism is popularly used in internal combustion engines to convert the reciprocating motion of the piston into a rotary motion. This research discusses an alternate mechanism proposed by the Wiseman Technology Inc. which involves replacing the crankshaft with a hypocycloid gear assembly. The unique hypocycloid gear arrangement allows the piston and the connecting rod to move in a straight line, creating a perfect sinusoidal motion. To analyze the performance advantages of the Wiseman mechanism, engine simulation software was used. The Wiseman engine with the hypocycloid piston motion was modeled in the software and the engine's simulated output results were compared to those with a conventional engine of the same size. The software was also used to analyze the multi-fuel capabilities of the Wiseman engine using a contra piston. The engine's performance was studied while operating on diesel, ethanol and gasoline fuel. Further, a scaling analysis on the future Wiseman engine prototypes was carried out to understand how the performance of the engine is affected by increasing the output power and cylinder displacement. It was found that the existing Wiseman engine produced about 7% less power at peak speeds compared to the slider-crank engine of the same size. It also produced lower torque and was about 6% less fuel efficient than the slider-crank engine. These results were concurrent with the dynamometer tests performed in the past. The 4 stroke diesel variant of the same Wiseman engine performed better than the 2 stroke gasoline version as well as the slider-crank engine in all aspects. The Wiseman engine using contra piston showed poor fuel efficiency while operating on E85 fuel. But it produced higher torque and about 1.4% more power than while running on gasoline. While analyzing the effects of the engine size on the Wiseman prototypes, it was found that the engines performed better in terms of power, torque, fuel efficiency and cylinder BMEP as their displacements increased. The 30 horsepower (HP) prototype, while operating on E85, produced the most optimum results in all aspects and the diesel variant of the same engine proved to be the most fuel efficient.
Date Created
2014
Agent

A study on the practical application of repair development methods for aerospace components

152266-Thumbnail Image.png
Description
In the industry of manufacturing, each gas turbine engine component begins in a raw state such as bar stock and is routed through manufacturing processes to define its final form before being installed on the engine. What is the follow-u

In the industry of manufacturing, each gas turbine engine component begins in a raw state such as bar stock and is routed through manufacturing processes to define its final form before being installed on the engine. What is the follow-up to this part? What happens when over time and usage it wears? Several factors have created a section of the manufacturing industry known as aftermarket to support the customer in their need for restoration and repair of their original product. Once a product has reached a wear factor or cycle limit that cannot be ignored, one of the options is to have it repaired to maintain use of the core. This research investigated the study into the creation and application of repair development methodology that can be utilized by current and new manufacturing engineers of the world. Those who have been in this field for some time will find the process thought provoking while the engineering students can develop a foundation of thinking to prepare for the common engineering problems they will be tasked to resolve. The examples, figures and tables are true issues of the industry though the data will have been changed due to proprietary factors. The results of the study reveals, under most scenarios, a solid process can be followed to proceed with the best options for repair based on the initial discrepancy. However, this methodology will not be a "catch-all" process but a guidance that will develop the proper thinking in evaluation of the repair options and the possible failure modes of each choice. As with any continuous improvement tool, further research is needed to test the applicability of this process in other fields.
Date Created
2013
Agent

Stability and reducibility of quasi-periodic systems

151079-Thumbnail Image.png
Description
In this work, we focused on the stability and reducibility of quasi-periodic systems. We examined the quasi-periodic linear Mathieu equation of the form x ̈+(ä+ϵ[cost+cosùt])x=0 The stability of solutions of Mathieu's equation as a function of parameter values (ä,ϵ) had

In this work, we focused on the stability and reducibility of quasi-periodic systems. We examined the quasi-periodic linear Mathieu equation of the form x ̈+(ä+ϵ[cost+cosùt])x=0 The stability of solutions of Mathieu's equation as a function of parameter values (ä,ϵ) had been analyzed in this work. We used the Floquet type theory to generate stability diagrams which were used to determine the bounded regions of stability in the ä-ù plane for fixed ϵ. In the case of reducibility, we first applied the Lyapunov- Floquet (LF) transformation and modal transformation, which converted the linear part of the system into the Jordan form. Very importantly, quasi-periodic near-identity transformation was applied to reduce the system equations to a constant coefficient system by solving homological equations via harmonic balance. In this process we obtained the reducibility/resonance conditions that needed to be satisfied to convert a quasi-periodic system to a constant one.
Date Created
2012
Agent

Repurposing technology: an innovative low cost two-dimensional noncontact measurement tool

150281-Thumbnail Image.png
Description
Two-dimensional vision-based measurement is an ideal choice for measuring small or fragile parts that could be damaged using conventional contact measurement methods. Two-dimensional vision-based measurement systems can be quite expensive putting the technology out of reach of inventors and others.

Two-dimensional vision-based measurement is an ideal choice for measuring small or fragile parts that could be damaged using conventional contact measurement methods. Two-dimensional vision-based measurement systems can be quite expensive putting the technology out of reach of inventors and others. The vision-based measurement tool design developed in this thesis is a low cost alternative that can be made for less than $500US from off-the-shelf parts and free software. The design is based on the USB microscope. The USB microscope was once considered a toy, similar to the telescopes and microscopes of the 17th century, but has recently started finding applications in industry, laboratories, and schools. In order to convert the USB microscope into a measurement tool, research in the following areas was necessary: currently available vision-based measurement systems, machine vision technologies, microscope design, photographic methods, digital imaging, illumination, edge detection, and computer aided drafting applications. The result of the research was a two-dimensional vision-based measurement system that is extremely versatile, easy to use, and, best of all, inexpensive.
Date Created
2011
Agent