A computational framework to model and learn context-specific gene regulatory networks from multi-source data

150114-Thumbnail Image.png
Description
Reverse engineering gene regulatory networks (GRNs) is an important problem in the domain of Systems Biology. Learning GRNs is challenging due to the inherent complexity of the real regulatory networks and the heterogeneity of samples in available biomedical data. Real

Reverse engineering gene regulatory networks (GRNs) is an important problem in the domain of Systems Biology. Learning GRNs is challenging due to the inherent complexity of the real regulatory networks and the heterogeneity of samples in available biomedical data. Real world biological data are commonly collected from broad surveys (profiling studies) and aggregate highly heterogeneous biological samples. Popular methods to learn GRNs simplistically assume a single universal regulatory network corresponding to available data. They neglect regulatory network adaptation due to change in underlying conditions and cellular phenotype or both. This dissertation presents a novel computational framework to learn common regulatory interactions and networks underlying the different sets of relatively homogeneous samples from real world biological data. The characteristic set of samples/conditions and corresponding regulatory interactions defines the cellular context (context). Context, in this dissertation, represents the deterministic transcriptional activity within the specific cellular regulatory mechanism. The major contributions of this framework include - modeling and learning context specific GRNs; associating enriched samples with contexts to interpret contextual interactions using biological knowledge; pruning extraneous edges from the context-specific GRN to improve the precision of the final GRNs; integrating multisource data to learn inter and intra domain interactions and increase confidence in obtained GRNs; and finally, learning combinatorial conditioning factors from the data to identify regulatory cofactors. The framework, Expattern, was applied to both real world and synthetic data. Interesting insights were obtained into mechanism of action of drugs on analysis of NCI60 drug activity and gene expression data. Application to refractory cancer data and Glioblastoma multiforme yield GRNs that were readily annotated with context-specific phenotypic information. Refractory cancer GRNs also displayed associations between distinct cancers, not observed through only clustering. Performance comparisons on multi-context synthetic data show the framework Expattern performs better than other comparable methods.
Date Created
2011
Agent