Human inspired control system for an unmanned ground vehicle

153444-Thumbnail Image.png
Description
In this research work, a novel control system strategy for the robust control of an unmanned ground vehicle is proposed. This strategy is motivated by efforts to mitigate the problem for scenarios in which the human operator is unable to

In this research work, a novel control system strategy for the robust control of an unmanned ground vehicle is proposed. This strategy is motivated by efforts to mitigate the problem for scenarios in which the human operator is unable to properly communicate with the vehicle. This novel control system strategy consisted of three major components: I.) Two independent intelligent controllers, II.) An intelligent navigation system, and III.) An intelligent controller tuning unit. The inner workings of the first two components are based off the Brain Emotional Learning (BEL), which is a mathematical model of the Amygdala-Orbitofrontal, a region in mammalians brain known to be responsible for emotional learning. Simulation results demonstrated the implementation of the BEL model to be very robust, efficient, and adaptable to dynamical changes in its application as controller and as a sensor fusion filter for an unmanned ground vehicle. These results were obtained with significantly less computational cost when compared to traditional methods for control and sensor fusion. For the intelligent controller tuning unit, the implementation of a human emotion recognition system was investigated. This system was utilized for the classification of driving behavior. Results from experiments showed that the affective states of the driver are accurately captured. However, the driver's affective state is not a good indicator of the driver's driving behavior. As a result, an alternative method for classifying driving behavior from the driver's brain activity was explored. This method proved to be successful at classifying the driver's behavior. It obtained results comparable to the common approach through vehicle parameters. This alternative approach has the advantage of directly classifying driving behavior from the driver, which is of particular use in UGV domain because the operator's information is readily available. The classified driving mode was used tune the controllers' performance to a desired mode of operation. Such qualities are required for a contingency control system that would allow the vehicle to operate with no operator inputs.
Date Created
2015
Agent

Design and analysis of stop-rotor multimode unmanned aerial vehicle (UAV)

150105-Thumbnail Image.png
Description
The objective of this work is to develop a Stop-Rotor Multimode UAV. This UAV is capable of vertical take-off and landing like a helicopter and can convert from a helicopter mode to an airplane mode in mid-flight. Thus, this UAV

The objective of this work is to develop a Stop-Rotor Multimode UAV. This UAV is capable of vertical take-off and landing like a helicopter and can convert from a helicopter mode to an airplane mode in mid-flight. Thus, this UAV can hover as a helicopter and achieve high mission range of an airplane. The stop-rotor concept implies that in mid-flight the lift generating helicopter rotor stops and rotates the blades into airplane wings. The thrust in airplane mode is then provided by a pusher propeller. The aircraft configuration presents unique challenges in flight dynamics, modeling and control. In this thesis a mathematical model along with the design and simulations of a hover control will be presented. In addition, the discussion of the performance in fixed-wing flight, and the autopilot architecture of the UAV will be presented. Also presented, are some experimental "conversion" results where the Stop-Rotor aircraft was dropped from a hot air balloon and performed a successful conversion from helicopter to airplane mode.
Date Created
2011
Agent