Correlated GMM logistic regression models with time-dependent covariates and valid estimating equations

Description
When analyzing longitudinal data it is essential to account both for the correlation inherent from the repeated measures of the responses as well as the correlation realized on account of the feedback created between the responses at a particular time

When analyzing longitudinal data it is essential to account both for the correlation inherent from the repeated measures of the responses as well as the correlation realized on account of the feedback created between the responses at a particular time and the predictors at other times. A generalized method of moments (GMM) for estimating the coefficients in longitudinal data is presented. The appropriate and valid estimating equations associated with the time-dependent covariates are identified, thus providing substantial gains in efficiency over generalized estimating equations (GEE) with the independent working correlation. Identifying the estimating equations for computation is of utmost importance. This paper provides a technique for identifying the relevant estimating equations through a general method of moments. I develop an approach that makes use of all the valid estimating equations necessary with each time-dependent and time-independent covariate. Moreover, my approach does not assume that feedback is always present over time, or present at the same degree. I fit the GMM correlated logistic regression model in SAS with PROC IML. I examine two datasets for illustrative purposes. I look at rehospitalization in a Medicare database. I revisit data regarding the relationship between the body mass index and future morbidity among children in the Philippines. These datasets allow us to compare my results with some earlier methods of analyses.
Date Created
2012
Agent

Multivariate generalization of reduced major axis regression

150996-Thumbnail Image.png
Description
A least total area of triangle method was proposed by Teissier (1948) for fitting a straight line to data from a pair of variables without treating either variable as the dependent variable while allowing each of the variables to have

A least total area of triangle method was proposed by Teissier (1948) for fitting a straight line to data from a pair of variables without treating either variable as the dependent variable while allowing each of the variables to have measurement errors. This method is commonly called Reduced Major Axis (RMA) regression and is often used instead of Ordinary Least Squares (OLS) regression. Results for confidence intervals, hypothesis testing and asymptotic distributions of coefficient estimates in the bivariate case are reviewed. A generalization of RMA to more than two variables for fitting a plane to data is obtained by minimizing the sum of a function of the volumes obtained by drawing, from each data point, lines parallel to each coordinate axis to the fitted plane (Draper and Yang 1997; Goodman and Tofallis 2003). Generalized RMA results for the multivariate case obtained by Draper and Yang (1997) are reviewed and some investigations of multivariate RMA are given. A linear model is proposed that does not specify a dependent variable and allows for errors in the measurement of each variable. Coefficients in the model are estimated by minimization of the function of the volumes previously mentioned. Methods for obtaining coefficient estimates are discussed and simulations are used to investigate the distribution of coefficient estimates. The effects of sample size, sampling error and correlation among variables on the estimates are studied. Bootstrap methods are used to obtain confidence intervals for model coefficients. Residual analysis is considered for assessing model assumptions. Outlier and influential case diagnostics are developed and a forward selection method is proposed for subset selection of model variables. A real data example is provided that uses the methods developed. Topics for further research are discussed.
Date Created
2012
Agent

Regression analysis of grouped counts and frequencies using the generalized linear model

150618-Thumbnail Image.png
Description
Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there

Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate GCGF outcomes. The purpose of this dissertation was to compare the statistical performance of four regression models (linear regression, Poisson regression, ordinal logistic regression, and beta regression) that can be used when the outcome is a GCGF variable. A simulation study was used to determine the power, type I error, and confidence interval (CI) coverage rates for these models under different conditions. Mean structure, variance structure, effect size, continuous or binary predictor, and sample size were included in the factorial design. Mean structures reflected either a linear relationship or an exponential relationship between the predictor and the outcome. Variance structures reflected homoscedastic (as in linear regression), heteroscedastic (monotonically increasing) or heteroscedastic (increasing then decreasing) variance. Small to medium, large, and very large effect sizes were examined. Sample sizes were 100, 200, 500, and 1000. Results of the simulation study showed that ordinal logistic regression produced type I error, statistical power, and CI coverage rates that were consistently within acceptable limits. Linear regression produced type I error and statistical power that were within acceptable limits, but CI coverage was too low for several conditions important to the analysis of counts and frequencies. Poisson regression and beta regression displayed inflated type I error, low statistical power, and low CI coverage rates for nearly all conditions. All models produced unbiased estimates of the regression coefficient. Based on the statistical performance of the four models, ordinal logistic regression seems to be the preferred method for analyzing GCGF outcomes. Linear regression also performed well, but CI coverage was too low for conditions with an exponential mean structure and/or heteroscedastic variance. Some aspects of model prediction, such as model fit, were not assessed here; more research is necessary to determine which statistical model best captures the unique properties of GCGF outcomes.
Date Created
2012
Agent

Predicting empathy-related responding and prosocial behavior from dispositional sadness and effortful control

150549-Thumbnail Image.png
Description
The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior, and whether empathy-related responding (i.e., sympathy, personal distress) mediated this relation. It was hypothesized that children who were dispositionally sad, but well-regulated (i.e., moderate to

The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior, and whether empathy-related responding (i.e., sympathy, personal distress) mediated this relation. It was hypothesized that children who were dispositionally sad, but well-regulated (i.e., moderate to high in effortful control), would experience sympathy versus personal distress, and thus would engage in more prosocial behaviors than children who were not well-regulated. Constructs were measured across three time points, when children were 18-, 30-, and 42-months old. In addition, early effortful control (at 18 months) was investigated as a potential moderator of the relation between dispositional sadness and empathy-related responding. Separate path models were computed for sadness predicting prosocial behavior with (1) sympathy and (2) personal distress as the mediator. In path analysis, sadness was found to be a positive predictor of sympathy across time. There was not a significant mediated effect of sympathy on the relation between sadness and prosocial behavior (both reported and observed). In path models with personal distress, sadness was not a significant predictor of personal distress, and personal distress was not a significant predictor of prosocial behavior (therefore, mediation analyses were not pursued). The moderated effect of effortful control was significant for the relation between 18-month sadness and 30-month sympathy; contrary to expectation, sadness was a significant, positive predictor of sympathy only for children who had average and low levels of effortful control (children high in effortful control were high in sympathy regardless of level of sadness). There was no significant moderated effect of effortful control on the path from sadness to personal distress. Findings are discussed in terms of the role of sadness in empathy-related responding and prosocial behavior as well as the dual role of effortful control and sadness in predicting empathy-related responding.
Date Created
2012
Agent

Chi-square orthogonal components for assessing goodness-of-fit of multidimensional multinomial data

150135-Thumbnail Image.png
Description
It is common in the analysis of data to provide a goodness-of-fit test to assess the performance of a model. In the analysis of contingency tables, goodness-of-fit statistics are frequently employed when modeling social science, educational or psychological data where

It is common in the analysis of data to provide a goodness-of-fit test to assess the performance of a model. In the analysis of contingency tables, goodness-of-fit statistics are frequently employed when modeling social science, educational or psychological data where the interest is often directed at investigating the association among multi-categorical variables. Pearson's chi-squared statistic is well-known in goodness-of-fit testing, but it is sometimes considered to produce an omnibus test as it gives little guidance to the source of poor fit once the null hypothesis is rejected. However, its components can provide powerful directional tests. In this dissertation, orthogonal components are used to develop goodness-of-fit tests for models fit to the counts obtained from the cross-classification of multi-category dependent variables. Ordinal categories are assumed. Orthogonal components defined on marginals are obtained when analyzing multi-dimensional contingency tables through the use of the QR decomposition. A subset of these orthogonal components can be used to construct limited-information tests that allow one to identify the source of lack-of-fit and provide an increase in power compared to Pearson's test. These tests can address the adverse effects presented when data are sparse. The tests rely on the set of first- and second-order marginals jointly, the set of second-order marginals only, and the random forest method, a popular algorithm for modeling large complex data sets. The performance of these tests is compared to the likelihood ratio test as well as to tests based on orthogonal polynomial components. The derived goodness-of-fit tests are evaluated with studies for detecting two- and three-way associations that are not accounted for by a categorical variable factor model with a single latent variable. In addition the tests are used to investigate the case when the model misspecification involves parameter constraints for large and sparse contingency tables. The methodology proposed here is applied to data from the 38th round of the State Survey conducted by the Institute for Public Policy and Michigan State University Social Research (2005) . The results illustrate the use of the proposed techniques in the context of a sparse data set.
Date Created
2011
Agent

Saddle squares in random two person zero sum games with finitely many strategies

149960-Thumbnail Image.png
Description
By the von Neumann min-max theorem, a two person zero sum game with finitely many pure strategies has a unique value for each player (summing to zero) and each player has a non-empty set of optimal mixed strategies. If

By the von Neumann min-max theorem, a two person zero sum game with finitely many pure strategies has a unique value for each player (summing to zero) and each player has a non-empty set of optimal mixed strategies. If the payoffs are independent, identically distributed (iid) uniform (0,1) random variables, then with probability one, both players have unique optimal mixed strategies utilizing the same number of pure strategies with positive probability (Jonasson 2004). The pure strategies with positive probability in the unique optimal mixed strategies are called saddle squares. In 1957, Goldman evaluated the probability of a saddle point (a 1 by 1 saddle square), which was rediscovered by many authors including Thorp (1979). Thorp gave two proofs of the probability of a saddle point, one using combinatorics and one using a beta integral. In 1965, Falk and Thrall investigated the integrals required for the probabilities of a 2 by 2 saddle square for 2 × n and m × 2 games with iid uniform (0,1) payoffs, but they were not able to evaluate the integrals. This dissertation generalizes Thorp's beta integral proof of Goldman's probability of a saddle point, establishing an integral formula for the probability that a m × n game with iid uniform (0,1) payoffs has a k by k saddle square (k ≤ m,n). Additionally, the probabilities of a 2 by 2 and a 3 by 3 saddle square for a 3 × 3 game with iid uniform(0,1) payoffs are found. For these, the 14 integrals observed by Falk and Thrall are dissected into 38 disjoint domains, and the integrals are evaluated using the basic properties of the dilogarithm function. The final results for the probabilities of a 2 by 2 and a 3 by 3 saddle square in a 3 × 3 game are linear combinations of 1, π2, and ln(2) with rational coefficients.
Date Created
2011
Agent