Active dust devils on Mars: a comparison of six spacecraft landing sites

149916-Thumbnail Image.png
Description
Dust devils have proven to be commonplace on Mars, although their occurrence is unevenly distributed across the surface. They were imaged or inferred by all six successful landed spacecraft: the Viking 1 and 2 Landers (VL-1 and VL-2), Mars Pathfinder

Dust devils have proven to be commonplace on Mars, although their occurrence is unevenly distributed across the surface. They were imaged or inferred by all six successful landed spacecraft: the Viking 1 and 2 Landers (VL-1 and VL-2), Mars Pathfinder Lander, the Mars Exploration Rovers Spirit and Opportunity, and the Phoenix Mars Lander. Comparisons of dust devil parameters were based on results from optical and meteorological (MET) detection campaigns. Spatial variations were determined based on comparisons of their frequency, morphology, and behavior. The Spirit data spanning three consecutive martian years is used as the basis of comparison because it is the most extensive on this topic. Average diameters were between 8 and 115 m for all observed or detected dust devils. The average horizontal speed for all of the studies was roughly 5 m/s. At each site dust devil densities peaked between 09:00 and 17:00 LTST during the spring and summer seasons supporting insolation-driven convection as the primary formation mechanism. Seasonal number frequency averaged ~1 dust devils/ km2/sol and spanned a total of three orders of magnitude. Extrapolated number frequencies determined for optical campaigns at the Pathfinder and Spirit sites accounted for temporal and spatial inconsistencies and averaged ~19 dust devils/km2/sol. Dust fluxes calculated from Pathfinder data (5x10-4 kg/m2/s and 7x10-5 kg/m2/s) were well with in the ranges calculated from Spirit data (4.0x10-9 to 4.6x10-4 kg/m2/s for Season One, 5.2x10-7 to 6.2x10-5 kg/m2/s during Season Two, and 1.5x10-7 to 1.6x10-4 kg/m2/s during Season Three). Based on the results a campaign is written for improvements in dust devil detection at the Mars Science Laboratory's (MSL) site. Of the four remaining candidate MSL sites, the dusty plains of Gale crater may potentially be the site with the highest probability of dust devil activity.
Date Created
2011
Agent

Distribution of windblown sediment in small craters on Mars

149627-Thumbnail Image.png
Description
Many shallow craters near the Spirit Mars Exploration Rover landing site contain asymmetric deposits of windblown sediments which could indicate the predominant local wind direction at the time of deposition or redistribution. Wind tunnel simulations and field studies of

Many shallow craters near the Spirit Mars Exploration Rover landing site contain asymmetric deposits of windblown sediments which could indicate the predominant local wind direction at the time of deposition or redistribution. Wind tunnel simulations and field studies of terrestrial craters were used to determine trends in deposition as a function of crater morphometry and wind direction. Terrestrial analog field work at the Amboy lava field, Mojave Desert, California, included real-time wind measurements and assessments of active sediment deposition in four small (<100 m) craters. Preliminary results indicate that reverse flow or stagnant wind and deposition on the upwind side of the crater floor occurs in craters with depth-to-diameter (d/D) ratios ≥0.05. Measurements taken within a crater of d/D of ~0.02 do not indicate reverse flow. Therefore, reverse flow is expected to cease within a d/D range of 0.02 to 0.05, resulting in wind movement directly over the crater floor in the downwind direction with no asymmetric sediment deposition. Wind tunnel simulations using six crater models, including a scaled model of a crater from the Amboy lava field, were completed to assess the wind flow in and around craters as a function of crater morphometry (depth, diameter). Reverse flow occurred in craters with d/D ratios ≥0.033, resulting in sediment deposition in the upwind portion of the crater floor. Visual observations of a crater with a d/D of ~0.020 did not indicate reverse flow, similar to the results of field studies; therefore, reverse flow appears to cease within a d/D range of 0.020 to 0.033. Craters with asymmetric aeolian deposits near the Mars Spirit landing site have d/D ratios of 0.034 to 0.076, suggesting that reverse flow occurs in these craters. Thus, the position of windblown sediments in the northwest parts of the crater floors would indicate prevailing winds from the northwest to the southeast, consistent with late afternoon winds as predicted by the Mars Regional Atmospheric Modeling System (MRAMS) circulation model.
Date Created
2011
Agent