A threshold coverage flow-refueling location model to build a critical mass of alternative-fuel stations

153610-Thumbnail Image.png
Description
In order to address concerns about the dominance of petroleum-fueled vehicles, the transition to alternative-fueled counterparts is urgently needed. Top barriers preventing the widespread diffusion of alternative-fuel vehicles (AFV) are the limited range and the scarcity of refueling or recharging

In order to address concerns about the dominance of petroleum-fueled vehicles, the transition to alternative-fueled counterparts is urgently needed. Top barriers preventing the widespread diffusion of alternative-fuel vehicles (AFV) are the limited range and the scarcity of refueling or recharging infrastructures in convenient locations. Researchers have been developing models for optimally locating refueling facilities for range-limited vehicles, and recently a strategy has emerged to cluster refueling stations to encourage consumers to purchase alternative-fuel vehicles by building a critical mass of stations. However, clustering approaches have not yet been developed based on flow-based demand. This study proposes a Threshold Coverage extension to the original Flow Refueling Location Model (FRLM). The new model optimally locates p refueling stations on a network so as to maximize the weighted number of origin zones whose refuelable outbound round trips exceed a given threshold, thus to build critical mass based on flow-based demand on the network. Unlike other clustering approaches, this model can explicitly ensure that flow demands “covered” in the model are refuelable considering the limited driving range of AFVs. Despite not explicitly including local intra-zonal trips, numerical experiments on a statewide highway network proved the effectiveness of the model in clustering stations based on inter-city flow volumes on the network. The model’s policy implementation will provide managerial insights for some key concerns of the industry, such as geographic equity vs. critical mass, from a new perspective. This project will serve as a step to support a more successful public transition to alternative-fuel vehicles.
Date Created
2015
Agent

Spatial optimization approaches for solving the continuous Weber and multi-Weber problems

151286-Thumbnail Image.png
Description
Facility location models are usually employed to assist decision processes in urban and regional planning. The focus of this research is extensions of a classic location problem, the Weber problem, to address continuously distributed demand as well as multiple facilities.

Facility location models are usually employed to assist decision processes in urban and regional planning. The focus of this research is extensions of a classic location problem, the Weber problem, to address continuously distributed demand as well as multiple facilities. Addressing continuous demand and multi-facilities represents major challenges. Given advances in geographic information systems (GIS), computational science and associated technologies, spatial optimization provides a possibility for improved problem solution. Essential here is how to represent facilities and demand in geographic space. In one respect, spatial abstraction as discrete points is generally assumed as it simplifies model formulation and reduces computational complexity. However, errors in derived solutions are likely not negligible, especially when demand varies continuously across a region. In another respect, although mathematical functions describing continuous distributions can be employed, such theoretical surfaces are generally approximated in practice using finite spatial samples due to a lack of complete information. To this end, the dissertation first investigates the implications of continuous surface approximation and explicitly shows errors in solutions obtained from fitted demand surfaces through empirical applications. The dissertation then presents a method to improve spatial representation of continuous demand. This is based on infill asymptotic theory, which indicates that errors in fitted surfaces tend to zero as the number of sample points increases to infinity. The implication for facility location modeling is that a solution to the discrete problem with greater demand point density will approach the theoretical optimum for the continuous counterpart. Therefore, in this research discrete points are used to represent continuous demand to explore this theoretical convergence, which is less restrictive and less problem altering compared to existing alternatives. The proposed continuous representation method is further extended to develop heuristics to solve the continuous Weber and multi-Weber problems, where one or more facilities can be sited anywhere in continuous space to best serve continuously distributed demand. Two spatial optimization approaches are proposed for the two extensions of the Weber problem, respectively. The special characteristics of those approaches are that they integrate optimization techniques and GIS functionality. Empirical results highlight the advantages of the developed approaches and the importance of solution integration within GIS.
Date Created
2012
Agent

Location of refueling stations for alternative fuel vehicles considering driver deviation behavior and uneven consumer demand: model, heuristics, and GIS

149488-Thumbnail Image.png
Description

Concerns about Peak Oil, political instability in the Middle East, health hazards, and greenhouse gas emissions of fossil fuels have stimulated interests in alternative fuels such as biofuels, natural gas, electricity, and hydrogen. Alternative fuels are expected to play an

Concerns about Peak Oil, political instability in the Middle East, health hazards, and greenhouse gas emissions of fossil fuels have stimulated interests in alternative fuels such as biofuels, natural gas, electricity, and hydrogen. Alternative fuels are expected to play an important role in a transition to a sustainable transportation system. One of the major barriers to the success of alternative-fuel vehicles (AFV) is the lack of infrastructure for producing, distributing, and delivering alternative fuels. Efficient methods that locate alternative-fuel refueling stations are essential in accelerating the advent of a new energy economy. The objectives of this research are to develop a location model and a Spatial Decision Support System (SDSS) that aims to support the decision of developing initial alternative-fuel stations. The main focus of this research is the development of a location model for siting alt-fuel refueling stations considering not only the limited driving range of AFVs but also the necessary deviations that drivers are likely to make from their shortest paths in order to refuel their AFVs when the refueling station network is sparse. To add reality and applicability of the model, the research is extended to include the development of efficient heuristic algorithms, the development of a method to incorporate AFV demand estimates into OD flow volumes, and the development of a prototype SDSS. The model and methods are tested on real-world road network data from state of Florida. The Deviation-Flow Refueling Location Model (DFRLM) locates facilities to maximize the total flows refueled on deviation paths. The flow volume is assumed to be decreasing as the deviation increases. Test results indicate that the specification of the maximum allowable deviation and specific deviation penalty functional form do have a measurable effect on the optimal locations of facilities and objective function values as well. The heuristics (greedy-adding and greedy-adding with substitution) developed here have been identified efficient in solving the DFRLM while AFV demand has a minor effect on the optimal facility locations. The prototype SDSS identifies strategic station locations by providing flexibility in combining various AFV demand scenarios. This research contributes to the literature by enhancing flow-based location models for locating alternative-fuel stations in four dimensions: (1) drivers' deviations from their shortest paths, (2) efficient solution approaches for the deviation problem, (3) incorporation of geographically uneven alt-fuel vehicle demand estimates into path-based origin-destination flow data, and (4) integration into an SDSS to help decision makers by providing solutions and insights into developing alt-fuel stations.

Date Created
2010
Agent