Camera calibration using adaptive segmentation and ellipse fitting for localizing control points

151204-Thumbnail Image.png
Description
There is a growing interest for improved high-accuracy camera calibration methods due to the increasing demand for 3D visual media in commercial markets. Camera calibration is used widely in the fields of computer vision, robotics and 3D reconstruction. Camera calibration

There is a growing interest for improved high-accuracy camera calibration methods due to the increasing demand for 3D visual media in commercial markets. Camera calibration is used widely in the fields of computer vision, robotics and 3D reconstruction. Camera calibration is the first step for extracting 3D data from a 2D image. It plays a crucial role in computer vision and 3D reconstruction due to the fact that the accuracy of the reconstruction and 3D coordinate determination relies on the accuracy of the camera calibration to a great extent. This thesis presents a novel camera calibration method using a circular calibration pattern. The disadvantages and issues with existing state-of-the-art methods are discussed and are overcome in this work. The implemented system consists of techniques of local adaptive segmentation, ellipse fitting, projection and optimization. Simulation results are presented to illustrate the performance of the proposed scheme. These results show that the proposed method reduces the error as compared to the state-of-the-art for high-resolution images, and that the proposed scheme is more robust to blur in the imaged calibration pattern.
Date Created
2012
Agent

Efficient perceptual super-resolution

150440-Thumbnail Image.png
Description
Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR

Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and High-Resolution (HR) image quality. Existing SR approaches suffer from extremely high computational requirements due to the high number of unknowns to be estimated in the solution of the SR inverse problem. This thesis proposes efficient iterative SR techniques based on Visual Attention (VA) and perceptual modeling of the human visual system. In the first part of this thesis, an efficient ATtentive-SELective Perceptual-based (AT-SELP) SR framework is presented, where only a subset of perceptually significant active pixels is selected for processing by the SR algorithm based on a local contrast sensitivity threshold model and a proposed low complexity saliency detector. The proposed saliency detector utilizes a probability of detection rule inspired by concepts of luminance masking and visual attention. The second part of this thesis further enhances on the efficiency of selective SR approaches by presenting an ATtentive (AT) SR framework that is completely driven by VA region detectors. Additionally, different VA techniques that combine several low-level features, such as center-surround differences in intensity and orientation, patch luminance and contrast, bandpass outputs of patch luminance and contrast, and difference of Gaussians of luminance intensity are integrated and analyzed to illustrate the effectiveness of the proposed selective SR frameworks. The proposed AT-SELP SR and AT-SR frameworks proved to be flexible by integrating a Maximum A Posteriori (MAP)-based SR algorithm as well as a fast two-stage Fusion-Restoration (FR) SR estimator. By adopting the proposed selective SR frameworks, simulation results show significant reduction on average in computational complexity with comparable visual quality in terms of quantitative metrics such as PSNR, SNR or MAE gains, and subjective assessment. The third part of this thesis proposes a Perceptually Weighted (WP) SR technique that incorporates unequal weighting parameters in the cost function of iterative SR problems. The proposed approach is inspired by the unequal processing of the Human Visual System (HVS) to different local image features in an image. Simulation results show an enhanced reconstruction quality and faster convergence rates when applied to the MAP-based and FR-based SR schemes.
Date Created
2011
Agent

3D modeling using multi-view images

149422-Thumbnail Image.png
Description
There is a growing interest in the creation of three-dimensional (3D) images and videos due to the growing demand for 3D visual media in commercial markets. A possible solution to produce 3D media files is to convert existing 2D images

There is a growing interest in the creation of three-dimensional (3D) images and videos due to the growing demand for 3D visual media in commercial markets. A possible solution to produce 3D media files is to convert existing 2D images and videos to 3D. The 2D to 3D conversion methods that estimate the depth map from 2D scenes for 3D reconstruction present an efficient approach to save on the cost of the coding, transmission and storage of 3D visual media in practical applications. Various 2D to 3D conversion methods based on depth maps have been developed using existing image and video processing techniques. The depth maps can be estimated either from a single 2D view or from multiple 2D views. This thesis presents a MATLAB-based 2D to 3D conversion system from multiple views based on the computation of a sparse depth map. The 2D to 3D conversion system is able to deal with the multiple views obtained from uncalibrated hand-held cameras without knowledge of the prior camera parameters or scene geometry. The implemented system consists of techniques for image feature detection and registration, two-view geometry estimation, projective 3D scene reconstruction and metric upgrade to reconstruct the 3D structures by means of a metric transformation. The implemented 2D to 3D conversion system is tested using different multi-view image sets. The obtained experimental results of reconstructed sparse depth maps of feature points in 3D scenes provide relative depth information of the objects. Sample ground-truth depth data points are used to calculate a scale factor in order to estimate the true depth by scaling the obtained relative depth information using the estimated scale factor. It was found out that the obtained reconstructed depth map is consistent with the ground-truth depth data.
Date Created
2010
Agent

Advanced methods in post cartesian imaging

149385-Thumbnail Image.png
Description
Magnetic resonance (MR) imaging with data acquisition on a non-rectangular grid permits a variety of approaches to cover k-space. This flexibility can be exploited to achieve clinically relevant characteristics -- fast yet full coverage for short scan times, center out

Magnetic resonance (MR) imaging with data acquisition on a non-rectangular grid permits a variety of approaches to cover k-space. This flexibility can be exploited to achieve clinically relevant characteristics -- fast yet full coverage for short scan times, center out schemes for short Te, over-sampled k-space for robustness to motion, long acquisition time for improved signal-to-noise (SNR) performance and benign under-sampling (aliasing) artifact. This dissertation presents advances in Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) trajectory design and improved reconstruction for spiral imaging. Scan time in PROPELLER imaging can be reduced by tailoring the trajectory to the required Field-Of-View (FOV). A technique to design the PROPELLER trajectory for an elliptical FOV is described. The proposed solution is a set of empirically derived closed form equations that preserve the standard PROPELLER geometry and specify the minimum number of blades necessary. Reconstructing spiral scans requires accurate trajectory information. A simple method to measure the deviation from the designed trajectory due to gradient coupling is presented. A line phantom is used to force a uniform structure in a predetermined orientation in k-space. This uniformity permits measurements of zeroth order trajectory deviations due to gradient coupling. Spiral reconstruction is also sensitive to B0 inhomogeneities (variations in the external magnetic field). This sensitivity manifests itself as a spatially varying blur. An algorithm to correct for concomitant field and first order B0 inhomogeneity effects is developed based on de-blurring via convolution by separable kernels. To reduce computation time, an empirical equation for sufficient kernel length is derived. It is also necessary to know the noise characteristics of the proposed algorithm; this is investigated via Monte-Carlo simulations. The algorithm is further extended to correct for concomitant field artifacts by modeling these artifacts as blurring due to a temporally static field map. This approach has the potential for further reduction in computational cost by combining the B0 map with the concomitant field map to simultaneously correct for artifacts resulting from both field inhomogeneities and concomitant field map.
Date Created
2010
Agent