On Density and Noise Challenges in Tensor-Based Data Analytics

161232-Thumbnail Image.png
Description
Many real-world problems, such as model- and data-driven computer simulation analysis, social and collaborative network analysis, brain data analysis, and so on, benefit from jointly modeling and analyzing the underlying patterns associated with complex, multi-relational data. Tensor decomposition is an

Many real-world problems, such as model- and data-driven computer simulation analysis, social and collaborative network analysis, brain data analysis, and so on, benefit from jointly modeling and analyzing the underlying patterns associated with complex, multi-relational data. Tensor decomposition is an ideal mathematical tool for this joint modeling, due to its simultaneous analysis of such multi-relational data, which is made possible by the data's multidimensional, array-based nature. A major challenge in tensor decomposition lies with its computational and space complexity, especially for dense datasets. While the process is comparatively faster for sparse tensors, decomposition is still a major bottleneck for many applications. The tensor decomposition process results in dense (hence, large) intermediate results, even when the input tensor is sparse (or small). Noise is another challenge for most data mining techniques, and many tensor decomposition schemes are sensitive to noisy datasets; this is an inevitable problem for real-world data, which can lead to false conclusions. In this dissertation, I develop innovative tensor decomposition algorithms for mining both sparse and dense multi-relational data in a noise-resistant way. I present novel, scalable, parallelizable tensor decomposition algorithms, specifically tuned to be effective for dense, noisy tensors, and which maintain the quality of the resulting analysis. Furthermore, I present results on multi-relational data applications focusing on model- and data-driven computer simulation analysis, as well as social network and web mining, which demonstrate the effectiveness of these tensor decompositions.
Date Created
2019
Agent

Time efficient and quality effective K nearest neighbor search in high dimension space

149882-Thumbnail Image.png
Description
K-Nearest-Neighbors (KNN) search is a fundamental problem in many application domains such as database and data mining, information retrieval, machine learning, pattern recognition and plagiarism detection. Locality sensitive hash (LSH) is so far the most practical approximate KNN search algorithm

K-Nearest-Neighbors (KNN) search is a fundamental problem in many application domains such as database and data mining, information retrieval, machine learning, pattern recognition and plagiarism detection. Locality sensitive hash (LSH) is so far the most practical approximate KNN search algorithm for high dimensional data. Algorithms such as Multi-Probe LSH and LSH-Forest improve upon the basic LSH algorithm by varying hash bucket size dynamically at query time, so these two algorithms can answer different KNN queries adaptively. However, these two algorithms need a data access post-processing step after candidates' collection in order to get the final answer to the KNN query. In this thesis, Multi-Probe LSH with data access post-processing (Multi-Probe LSH with DAPP) algorithm and LSH-Forest with data access post-processing (LSH-Forest with DAPP) algorithm are improved by replacing the costly data access post-processing (DAPP) step with a much faster histogram-based post-processing (HBPP). Two HBPP algorithms: LSH-Forest with HBPP and Multi- Probe LSH with HBPP are presented in this thesis, both of them achieve the three goals for KNN search in large scale high dimensional data set: high search quality, high time efficiency, high space efficiency. None of the previous KNN algorithms can achieve all three goals. More specifically, it is shown that HBPP algorithms can always achieve high search quality (as good as LSH-Forest with DAPP and Multi-Probe LSH with DAPP) with much less time cost (one to several orders of magnitude speedup) and same memory usage. It is also shown that with almost same time cost and memory usage, HBPP algorithms can always achieve better search quality than LSH-Forest with random pick (LSH-Forest with RP) and Multi-Probe LSH with random pick (Multi-Probe LSH with RP). Moreover, to achieve a very high search quality, Multi-Probe with HBPP is always a better choice than LSH-Forest with HBPP, regardless of the distribution, size and dimension number of the data set.
Date Created
2011
Agent