Multidisciplinary optimization for the design and control of uncertain dynamical systems

152420-Thumbnail Image.png
Description
This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not

This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control architecture to do so). System and controller designers often go through several iterations in order to converge to an acceptable plant and controller design. The focus of this dissertation is on the design and control an air-breathing hypersonic vehicle using such an integrated system-control design framework. The goal is to reduce the number of system-control design iterations (by explicitly incorporate control considerations in the system design process), as well as to influence the guidance/trajectory specifications for the system. Due to the high computational costs associated with obtaining a dynamic model for each plant configuration considered, approximations to the system dynamics are used in the control design process. By formulating the control design problem using bilinear and polynomial matrix inequalities, several common control and system design constraints can be simultaneously incorporated into a vehicle design optimization. Several design problems are examined to illustrate the effectiveness of this approach (and to compare the computational burden of this methodology against more traditional approaches).
Date Created
2014
Agent

H-infinity control design via convex optimization: toward a comprehensive design environment

152341-Thumbnail Image.png
Description
The problem of systematically designing a control system continues to remain a subject of intense research. In this thesis, a very powerful control system design environment for Linear Time-Invariant (LTI) Multiple-Input Multiple-Output (MIMO) plants is presented. The environment has been

The problem of systematically designing a control system continues to remain a subject of intense research. In this thesis, a very powerful control system design environment for Linear Time-Invariant (LTI) Multiple-Input Multiple-Output (MIMO) plants is presented. The environment has been designed to address a broad set of closed loop metrics and constraints; e.g. weighted H-infinity closed loop performance subject to closed loop frequency and/or time domain constraints (e.g. peak frequency response, peak overshoot, peak controls, etc.). The general problem considered - a generalized weighted mixed-sensitivity problem subject to constraints - permits designers to directly address and tradeoff multivariable properties at distinct loop breaking points; e.g. at plant outputs and at plant inputs. As such, the environment is particularly powerful for (poorly conditioned) multivariable plants. The Youla parameterization is used to parameterize the set of all stabilizing LTI proper controllers. This is used to convexify the general problem being addressed. Several bases are used to turn the resulting infinite-dimensional problem into a finite-dimensional problem for which there exist many efficient convex optimization algorithms. A simple cutting plane algorithm is used within the environment. Academic and physical examples are presented to illustrate the utility of the environment.
Date Created
2013
Agent

Feedback control and obstacle avoidance for non-holonomic differential drive robots

152330-Thumbnail Image.png
Description
This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to

This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to go from one particular co-ordinate to another. Cruise control, cartesian and posture stabilization problems are discussed as the part of this behavior. Control strategies used for the above three problems are explained in the thesis. Matlab simulations are presented to verify these controllers. Obstacle avoidance behavior ensures that the vehicle doesn't hit object in its path while going towards the goal. Three different techniques for obstacle avoidance which are useful for different kind of obstacles are described in the thesis. Matlab simulations are presented to show and discuss the three techniques. The controls discussed for the cartesian and posture stabilization were implemented on a low cost miniature vehicle to verify the results practically. The vehicle is described in the thesis in detail. The practical results are compared with the simulations. Hardware and matlab codes have been provided as a reference for the reader.
Date Created
2013
Agent

Non-holonomic differential drive mobile robot control & design: critical dynamics and coupling constraints

152311-Thumbnail Image.png
Description
Mobile robots are used in a broad range of application areas; e.g. search and rescue, reconnaissance, exploration, etc. Given the increasing need for high performance mobile robots, the area has received attention by researchers. In this thesis, critical control and

Mobile robots are used in a broad range of application areas; e.g. search and rescue, reconnaissance, exploration, etc. Given the increasing need for high performance mobile robots, the area has received attention by researchers. In this thesis, critical control and control-relevant design issues for differential drive mobile robots is addressed. Two major themes that have been explored are the use of kinematic models for control design and the use of decentralized proportional plus integral (PI) control. While these topics have received much attention, there still remain critical questions which have not been rigorously addressed. In this thesis, answers to the following critical questions are provided: When is 1. a kinematic model sufficient for control design? 2. coupled dynamics essential? 3. a decentralized PI inner loop velocity controller sufficient? 4. centralized multiple-input multiple-output (MIMO) control essential? and how can one design the robot to relax the requirements implied in 1 and 2? In this thesis, the following is shown: 1. The nonlinear kinematic model will suffice for control design when the inner velocity (dynamic) loop is much faster (10X) than the slower outer positioning loop. 2. A dynamic model is essential when the inner velocity (dynamic) loop is less than two times faster than the slower outer positioning loop. 3. A decentralized inner loop PI velocity controller will be sufficient for accomplish- ing high performance control when the required velocity bandwidth is small, rel- ative to the peak dynamic coupling frequency. A rule-of-thumb which depends on the robot aspect ratio is given. 4. A centralized MIMO velocity controller is needed when the required bandwidth is large, relative to the peak dynamic coupling frequency. Here, the analysis in the thesis is sparse making the topic an area for future analytical work. Despite this, it is clearly shown that a centralized MIMO inner loop controller can offer increased performance vis- ́a-vis a decentralized PI controller. 5. Finally, it is shown how the dynamic coupling depends on the robot aspect ratio and how the coupling can be significantly reduced. As such, this can be used to ease the requirements imposed by 2 and 4 above.
Date Created
2013
Agent

Control relevant modeling and design of scramjet-powered hypersonic vehicles

150982-Thumbnail Image.png
Description
This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control

This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.
Date Created
2012
Agent