Target Detection Using Algorithmic Matter
Over the years, advances in research have continued to decrease the size of computers from the size of<br/>a room to a small device that could fit in one’s palm. However, if an application does not require extensive<br/>computation power nor accessories such as a screen, the corresponding machine could be microscopic,<br/>only a few nanometers big. Researchers at MIT have successfully created Syncells, which are micro-<br/>scale robots with limited computation power and memory that can communicate locally to achieve<br/>complex collective tasks. In order to control these Syncells for a desired outcome, they must each run a<br/>simple distributed algorithm. As they are only capable of local communication, Syncells cannot receive<br/>commands from a control center, so their algorithms cannot be centralized. In this work, we created a<br/>distributed algorithm that each Syncell can execute so that the system of Syncells is able to find and<br/>converge to a specific target within the environment. The most direct applications of this problem are in<br/>medicine. Such a system could be used as a safer alternative to invasive surgery or could be used to treat<br/>internal bleeding or tumors. We tested and analyzed our algorithm through simulation and visualization<br/>in Python. Overall, our algorithm successfully caused the system of particles to converge on a specific<br/>target present within the environment.
- Author (aut): Martin, Rebecca Clare
- Thesis director: Richa, Andréa
- Committee member: Lee, Heewook
- Contributor (ctb): Computer Science and Engineering Program
- Contributor (ctb): School of Mathematical and Statistical Sciences
- Contributor (ctb): School of Mathematical and Statistical Sciences
- Contributor (ctb): Barrett, The Honors College