A Sustainable Solution for Off-Grid Solar Power in Remote Communities

Description
This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people

This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people to be able to build and maintain their own off-grid solar power systems. Due to recent pushes for clean energy both nationwide and statewide, the team will discuss the current renewable energy market and the incentives to justify the future growth potential of residential solar energy systems, which includes off-grid or remote solar. This discussion will include comparing pre-built solar systems currently offered for purchase against the proposed design outlined in this report. Notably, the outlined design has been made with an emphasis on system sustainability, low initial cost, reliability, ease of manufacturing/maintenance, and material selection. Lastly, the team will discuss the project’s approach to documentation with a user manual draft to ensure the system's long-term sustainability and troubleshooting. Although the efforts of this project have increased over time, this project remains active within the ASU EWB chapter, meaning that not all aspects described throughout this report are fully complete. The Native American community of Shonto, Arizona, will be used as an example to understand a rural community's needs for designing a solar panel system that provides sufficient energy for a single household. The project was completed in collaboration with Arizona State University’s Engineering Projects In Community Service (EPICS) program and Engineers Without Borders (EWB) chapter. Both these organizations aim to connect ASU students to the professional mentors and resources they need to design and implement low-cost, small-scale, easily replicated, and sustainable engineering projects.
Date Created
2024-05
Agent

A Sustainable Solution for Off-Grid Solar Power in Remote Communities

Description

This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people

This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people to be able to build and maintain their own off-grid solar power systems. Due to recent incentives for clean energy both nationwide and statewide, the team will discuss the current renewable energy market and the future growth potential of residential solar energy systems, which includes off-grid or remote solar. This discussion will include comparing pre-built solar systems currently offered for purchase against the proposed design outlined in this report. Notably, the outlined design has been made with an emphasis on system sustainability, low initial cost, reliability, ease of manufacturing/maintenance, and material selection. Lastly, the team will discuss the project’s approach to documentation with a user manual draft to ensure the system's long-term sustainability and troubleshooting. Although the efforts of this project have increased over time, this project remains active within the ASU EWB chapter, meaning that not all aspects described throughout this report are fully complete as future work will continue to optimize and improve the system. A rural community in northern Arizona, will be used as an example to understand a rural community's needs for designing a solar panel system that provides sufficient energy for a single household. The project was completed in collaboration with Arizona State University’s Engineering Projects In Community Service (EPICS) program and Engineers Without Borders (EWB) chapter. Both these organizations aim to connect ASU students to the professional mentors and resources they need to design and implement low-cost, small-scale, easily replicated, and sustainable engineering projects.

Date Created
2023-05
Agent