DTALite: A Queue-Based Mesoscopic Traffic Simulator for Fast Model Evaluation and Calibration

128284-Thumbnail Image.png
Description

A number of emerging dynamic traffic analysis applications, such as regional or statewide traffic assignment, require a theoretically rigorous and computationally efficient model to describe the propagation and dissipation of system congestion with bottleneck capacity constraints. An open-source light-weight dynamic

A number of emerging dynamic traffic analysis applications, such as regional or statewide traffic assignment, require a theoretically rigorous and computationally efficient model to describe the propagation and dissipation of system congestion with bottleneck capacity constraints. An open-source light-weight dynamic traffic assignment (DTA) package, namely DTALite, has been developed to allow a rapid utilization of advanced dynamic traffic analysis capabilities. This paper describes its three major modeling components: (1) a light-weight dynamic network loading simulator that embeds Newell’s simplified kinematic wave model; (2) a mesoscopic agent-based DTA procedure to incorporate driver’s heterogeneity; and (3) an integrated traffic assignment and origin–destination demand calibration system that can iteratively adjust path flow volume and distribution to match the observed traffic counts. A number of real-world test cases are described to demonstrate the effectiveness and performance of the proposed models under different network and data availability conditions.

Date Created
2014-10-01
Agent

Characterizing Corridor-Level Travel Time Distributions Based on Stochastic Flows and Segment Capacities

128308-Thumbnail Image.png
Description

Trip travel time reliability is an important measure of transportation system performance and a key factor affecting travelers’ choices. This paper explores a method for estimating travel time distributions for corridors that contain multiple bottlenecks. A set of analytical equations

Trip travel time reliability is an important measure of transportation system performance and a key factor affecting travelers’ choices. This paper explores a method for estimating travel time distributions for corridors that contain multiple bottlenecks. A set of analytical equations are used to calculate the number of queued vehicles ahead of a probe vehicle and further capture many important factors affecting travel times: the prevailing congestion level, queue discharge rates at the bottlenecks, and flow rates associated with merges and diverges. Based on multiple random scenarios and a vector of arrival times, the lane-by-lane delay at each bottleneck along the corridor is recursively estimated to produce a route-level travel time distribution. The model incorporates stochastic variations of bottleneck capacity and demand and explains the travel time correlations between sequential links. Its data needs are the entering and exiting flow rates and a sense of the lane-by-lane distribution of traffic at each bottleneck. A detailed vehicle trajectory data-set from the Next Generation SIMulation (NGSIM) project has been used to verify that the estimated distributions are valid, and the sources of estimation error are examined.

Date Created
2015-01-09
Agent