Using Language Generation to Create Weather Forecasts
Description
The face of computing is constantly changing. Wearable computers in the form of glasses or watches are becoming more and more common. These devices have very small screens (measured in millimeters), and users often interact with them through voice input and audio feedback. Weather is one of the most regularly checked app category on smart devices, but weather results on these devices are often limited to raw data, canned responses, or sentence templates with numbers plugged in. The goal for this project was to build a system that could generate weather forecast text, which could then be read to a user through text-to-speech. By using methods in language generation, the system can generate weather forecast text in millions of different ways. This is all computed locally, and it covers every possible weather case. In order to generate natural weather forecast texts, the system retrieved raw weather data from a weather API and created the text through six methods: content determination, document structuring, sentence aggregation, lexical choice, referring expression generation, and text realization. Content determination is the process of deciding on what information to include in a computer generated text. The document structuring phase deals with the order and structure of the information. Sentence aggregation is the merging of similar sentences to improve readability and to reduce redundancy. Lexical choice is the process of putting words to concepts. Referring expression generation is the process of identifying objects, regions, time periods, and locations within a text. Finally text realization involves creating sentences with proper syntax, morphology, and orthography. Through these six stages, a system was developed that could generate unique weather forecast text from raw data accurately and efficiently. It was built for iOS devices with Apple's new programming language, Swift, and it will be ported to the Apple Watch when the API is fully opened to developers.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015-05
Agent
- Author (aut): Jorgensen, Jacob Paul
- Thesis director: Baral, Chitta
- Committee member: Faucon, Christophe
- Contributor (ctb): Barrett, The Honors College
- Contributor (ctb): Computer Science and Engineering Program