Modeling the mantle genesis of basalts from the Lassen Volcanic Center
Description
There are many outstanding questions regarding the petrologic processes that give rise to andesitic and basaltic magmas in subduction zones, including the specifics that govern their geographical distribution in a given arc segment. Here I investigate the genesis of calc-alkaline and tholeiitic basalts from the Lassen Volcanic Center in order to determine the pressure, temperature, source composition, and method of melting that lead to the production of melt in the mantle below Lassen. To this aim, a suite of primitive basalts (i.e. SiO2<52 and Mg#>65) are corrected for fractional crystallization by adding minerals back to the bulk rock composition with the goal of returning them to a primary composition in equilibrium with the mantle. Thermobarometry of the primary melt compositions is conducted to determine temperature and pressure of melting, in addition to a forward mantle modeling technique to simulate mantle melting at varying pressures to constrain source composition and method of melting (batch vs. fractional). The results from the two techniques agree on an average depth of melt extraction of 36 km and a source composition similar to that of depleted mantle melted by batch melting. Although attempted for both calc-alkaline and tholeiitic basalts, the fractional crystallization correction and thus the pressure-temperature calculations were only successful for tholeiitic basalts due to the hydrous nature of the calc-alkaline samples. This leaves an opportunity to repeat this study with parameters appropriate for hydrous basalts, allowing for the comparison of calc-alkaline and tholeiitic melting conditions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015-05
Agent
- Author (aut): Sheppard, Katherine Davis
- Thesis director: Till, Christy
- Committee member: Hervig, Richard
- Contributor (ctb): Barrett, The Honors College
- Contributor (ctb): School of Earth and Space Exploration