The Trajectory of Thought: Lévy Flight Patterns and Dynamical Systems in Human Memory Foraging

135023-Thumbnail Image.png
Description
Recent work in free-recall tasks suggest that human memory foraging may follow a Lévy flight distribution – a random walk procedure that is common in other activities of cognitive agents, such as animal and human food foraging. This study attempts

Recent work in free-recall tasks suggest that human memory foraging may follow a Lévy flight distribution – a random walk procedure that is common in other activities of cognitive agents, such as animal and human food foraging. This study attempts to draw parallels between memory search and physical search, with the assumption that humans follow similar search patterns in both. To date, research merely equates the two processes (foraging in memory and the physical world) based on a similarity in statistical structure. This study starts with demonstrating a relationship between physical distance traveled and IRIs by having participants list countries. An IRI, inter-retrieval interval, is the time interval between items recalled. The next experiment uses multidimensional scaling (MDS) to derive a Euclidean perceptual space from similarity ratings of freely-recalled items and then maps the trajectory of human thought through this perceptual space. This trajectory can offer a much more compelling comparison to physical foraging behavior. Finally, a possible correlate of Lévy flight foraging is explored called critical slowing down. Statistically significant evidence was found in all three experiments. The discussion connects all three experiments and what their results mean for human memory foraging.
Date Created
2016-12
Agent