Assessing Adaptive Learning Styles in Computer Science Through a Virtual World

155962-Thumbnail Image.png
Description
Programming is quickly becoming as ubiquitous and essential a skill as general mathematics. However, many elementary and high school students are still not aware of what the computer science field entails. To make matters worse, students who are introduced to

Programming is quickly becoming as ubiquitous and essential a skill as general mathematics. However, many elementary and high school students are still not aware of what the computer science field entails. To make matters worse, students who are introduced to computer science are frequently being fed only part of what it is about rather than its entire construction. Consequently, they feel out of their depth when they approach college. Research has discovered that by teaching computer science and programming through a problem-driven approach and focusing on a combination of syntax and computational thinking, students can be prepared when entering higher levels of computer science education.

This thesis describes the design, development, and early user testing of a theory-based virtual world for computer science instruction called System Dot. System Dot was designed to visually manifest programming instructions into interactable objects, giving players a way to see coding as tangible entities rather than text on a white screen. In order for System Dot to convey the true nature of computer science, a custom predictive recursive descent parser was embedded in the program to validate any user-generated solutions to pre-defined logical platforming puzzles.

Steps were taken to adapt the virtual world to player behavior by creating a system to detect their learning style playing the game. Through a dynamic Bayesian network, System Dot aims to classify a player’s learning style based on the Felder-Sylverman Learning Style Model (FSLSM). Testers played through the first half of System Dot, which was enough to test out the Bayesian network and initial learning style classification. This classification was then compared to the assessment by Felder’s Index of Learning Styles Questionnaire (ILSQ). Lastly, this thesis will also discuss ways to use the results from the user testing to implement a personalized feedback system for the virtual world in the future and what has been learned through the learning style method.
Date Created
2017
Agent

Harnessing Digital Footprints From Paper-based Assessments: An Investigation on Students' Reviewing Behavior

134971-Thumbnail Image.png
Description
This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback

This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was gathered from an undergraduate computer-programming course in the fall of 2016. Analysis of the data revealed that there was a negative correlation between time lag of first review attempt and performance. A survey was developed and disseminated that gave insight into how students felt about the technology and what they normally do to study for programming exams. In conclusion, the knowledge gained in this study aids in the quest to better educate students in computer programming in large in-person classrooms.
Date Created
2017-05
Agent

Investigating Online Effects of Extremist Incidents on Social Media A Case Study of Bangladesh

155861-Thumbnail Image.png
Description
Bangladesh is a secular democracy with almost 90% of its population constituting of Muslims and the rest 10% constituting of the minority groups that includes Hindus, Christians, Buddhists, Ahmadi Muslims, Shia, Sufi, LGBT groups and Atheists. In recent years, Bangladesh

Bangladesh is a secular democracy with almost 90% of its population constituting of Muslims and the rest 10% constituting of the minority groups that includes Hindus, Christians, Buddhists, Ahmadi Muslims, Shia, Sufi, LGBT groups and Atheists. In recent years, Bangladesh has experienced an increase in attacks by religious extremist groups, such as IS and AQIS affiliates, hate-groups and politically motivated violence. Attacks have also become indiscriminate, with assailants targeting a wide variety of individuals, including religious minorities and foreigners. According to the telecoms regulator, the number of internet users in Bangladesh now stands at over 66.8 million reaching 41% penetration. Of them, 63 million access the internet through mobile phones. Facebook, with the usage of about 97.2%, is the most used social network in Bangladesh.

In this research, local academics with cultural expertise collaborated to locate and download content from 292 Facebook groups organized under three (3) major umbrella types: Religious Terrorist Violence, Political Intolerance and Issue, and Target-based Intolerance between June2016 - December 2016 period. Dates of real extremist attacks were aligned with corresponding Facebook message streams, identified posts and comments related to the targets and perpetrators of the attacks, and proceeded to use the context of the attacks, their effects, the nature and structure of underlying extremist and counter-violent extremist networks, to study the narratives and trends over time.
Date Created
2017
Agent

Detecting Organizational Accounts from Twitter Based on Network and Behavioral Factors

155764-Thumbnail Image.png
Description
With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them from other types of graphs. In this thesis, five month

With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them from other types of graphs. In this thesis, five month Tweet corpus collected from Bangladesh - between June 2016 and October 2016 is analyzed, in order to detect accounts that belong to groups. These groups consist of official and non-official twitter handles of political organizations and NGOs in Bangladesh. A set of network, temporal, spatial and behavioral features are proposed to discriminate between accounts belonging to individual twitter users, news, groups and organization leaders. Finally, the experimental results are presented and a subset of relevant features is identified that lead to a generalizable model. Detection of tiny number of groups from large network is achieved with 0.8 precision, 0.75 recall and 0.77 F1 score. The domain independent network and behavioral features and models developed here are suitable for solving twitter account classification problem in any context.
Date Created
2017
Agent

Student modeling for English language learners in a moved by reading intervention

154915-Thumbnail Image.png
Description
EMBRACE (Enhanced Moved By Reading to Accelerate Comprehension in English) is an IPad application that uses the Moved By Reading strategy to help improve the reading comprehension skills of bilingual (Spanish speaking) English Language Learners (ELLs). In EMBRACE, students read

EMBRACE (Enhanced Moved By Reading to Accelerate Comprehension in English) is an IPad application that uses the Moved By Reading strategy to help improve the reading comprehension skills of bilingual (Spanish speaking) English Language Learners (ELLs). In EMBRACE, students read the text of a story and then move images corresponding to the text that they read. According to the embodied cognition theory, this grounds reading comprehension in physical experiences and thus is more engaging.

In this thesis, I used the log data from 20 students in grades 2-5 to design a skill model for a student using EMBRACE. A skill model is the set of knowledge components that a student needs to master in order to comprehend the text in EMBRACE. A good skill model will improve understanding of the mistakes students make and thus aid in the design of useful feedback for the student.. In this context, the skill model consists of vocabulary and syntax associated with the steps that students performed. I mapped each step in EMBRACE to one or more skills (vocabulary and syntax) from the model. After every step, the skill level is updated in the model. Thus, if a student answered the previous step incorrectly, the corresponding skills are decremented and if the student answered the previous question correctly, the corresponding skills are incremented, through the Bayesian Knowledge Tracing algorithm.

I then correlated the students’ predicted scores (computed from their skill levels) to their posttest scores. I evaluated the students’ predicted scores (computed from their skill levels) by comparing them to their posttest scores. The two sets of scores were not highly correlated, but the results gave insights into potential improvements that could be made to the system with respect to user interaction, posttest scores and modeling algorithm.
Date Created
2016
Agent

Feature selection techniques for effective model building and estimation on Twitter data to understand the political scenario in Latvia with supporting visualizations

154859-Thumbnail Image.png
Description
In supervised learning, machine learning techniques can be applied to learn a model on

a small set of labeled documents which can be used to classify a larger set of unknown

documents. Machine learning techniques can be used to analyze a political

In supervised learning, machine learning techniques can be applied to learn a model on

a small set of labeled documents which can be used to classify a larger set of unknown

documents. Machine learning techniques can be used to analyze a political scenario

in a given society. A lot of research has been going on in this field to understand

the interactions of various people in the society in response to actions taken by their

organizations.

This paper talks about understanding the Russian influence on people in Latvia.

This is done by building an eeffective model learnt on initial set of documents

containing a combination of official party web-pages, important political leaders' social

networking sites. Since twitter is a micro-blogging site which allows people to post

their opinions on any topic, the model built is used for estimating the tweets sup-

porting the Russian and Latvian political organizations in Latvia. All the documents

collected for analysis are in Latvian and Russian languages which are rich in vocabulary resulting into huge number of features. Hence, feature selection techniques can

be used to reduce the vocabulary set relevant to the classification model. This thesis

provides a comparative analysis of traditional feature selection techniques and implementation of a new iterative feature selection method using EM and cross-domain

training along with supportive visualization tool. This method out performed other

feature selection methods by reducing the number of features up-to 50% along with

good model accuracy. The results from the classification are used to interpret user

behavior and their political influence patterns across organizations in Latvia using

interactive dashboard with combination of powerful widgets.
Date Created
2016
Agent

Enhanced topic-based modeling for Twitter sentiment analysis

154849-Thumbnail Image.png
Description
In this thesis multiple approaches are explored to enhance sentiment analysis of tweets. A standard sentiment analysis model with customized features is first trained and tested to establish a baseline. This is compared to an existing topic based mixture model

In this thesis multiple approaches are explored to enhance sentiment analysis of tweets. A standard sentiment analysis model with customized features is first trained and tested to establish a baseline. This is compared to an existing topic based mixture model and a new proposed topic based vector model both of which use Latent Dirichlet Allocation (LDA) for topic modeling. The proposed topic based vector model has higher accuracies in terms of averaged F scores than the other two models.
Date Created
2016
Agent

Exploring generic features for online large-scale discussion forum comments

154632-Thumbnail Image.png
Description
Online discussion forums have become an integral part of education and are large repositories of valuable information. They facilitate exploratory learning by allowing users to review and respond to the work of others and approach learning in diverse ways. This

Online discussion forums have become an integral part of education and are large repositories of valuable information. They facilitate exploratory learning by allowing users to review and respond to the work of others and approach learning in diverse ways. This research investigates the different comment semantic features and the effect they have on the quality of a post in a large-scale discussion forum. We survey the relevant literature and employ the key content quality identification features. We then construct comment semantics features and build several regression models to explore the value of comment semantics dynamics. The results reconfirm the usefulness of several essential quality predictors, including time, reputation, length, and editorship. We also found that comment semantics are valuable to shape the answer quality. Specifically, the diversity of comments significantly contributes to the answer quality. In addition, when searching for good quality answers, it is important to look for global semantics dynamics (diversity), rather than observe local differences (disputable content). Finally, the presence of comments shepherd the community to revise the posts by attracting attentions to the posts and eventually facilitate the editing process.
Date Created
2016
Agent

Using differential sequence mining to associate patterns of interactions in concept mapping activity with dimensions of collaborative process

154213-Thumbnail Image.png
Description
Computer supported collaborative learning (CSCL) has made great inroads in classroom teaching marked by the use of tools and technologies to support and enhance collaborative learning. Computer mediated learning environments produce large amounts of data, capturing student interactions, which can

Computer supported collaborative learning (CSCL) has made great inroads in classroom teaching marked by the use of tools and technologies to support and enhance collaborative learning. Computer mediated learning environments produce large amounts of data, capturing student interactions, which can be used to analyze students’ learning behaviors (Martinez-Maldonado et al., 2013a). The analysis of the process of collaboration is an active area of research in CSCL. Contributing towards this area, Meier et al. (2007) defined nine dimensions and gave a rating scheme to assess the quality of collaboration. This thesis aims to extract and examine frequent patterns of students’ interactions that characterize strong and weak groups across the above dimensions. To achieve this, an exploratory data mining technique, differential sequence mining, was employed using data from a collaborative concept mapping activity where collaboration amongst students was facilitated by an interactive tabletop. The results associate frequent patterns of collaborative concept mapping process with some of the dimensions assessing the quality of collaboration. The analysis of associating these patterns with the dimensions of collaboration is theoretically grounded, considering aspects of collaborative learning, concept mapping, communication, group cognition and information processing. The results are preliminary but still demonstrate the potential of associating frequent patterns of interactions with strong and weak groups across specific dimensions of collaboration, which is relevant for students, teachers, and researchers to monitor the process of collaborative learning. The frequent patterns for strong groups reflected conformance to the process of conversation for dimensions related to “communication” aspect of collaboration. In terms of the concept mapping sub-processes the frequent patterns for strong groups reflect the presentation phase of conversation with processes like talking, sharing individual maps while constructing the groups concept map followed by short utterances which represents the acceptance phase. For “joint information processing” aspect of collaboration, the frequent patterns for strong groups were marked by learners’ contributing more upon each other’s work. In terms of the concept mapping sub-processes the frequent patterns were marked by learners adding links to each other’s concepts or working with each other’s concepts, while revising the group concept map.
Date Created
2015
Agent

Biology question generation from a semantic network

154146-Thumbnail Image.png
Description
Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to

Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions.

To boost students’ learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student’s current competence so that a suitable question could be selected based on the student’s previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group.

To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators.

A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from Amazon Mechanical Turk, it turned out that the two types of questions performed very closely on all the three measures.
Date Created
2015
Agent