Breathe Big Beetle: Despite Hypermetry, Scarab Spiracle Scaling Requires Switch from Diffusive to Convective Gas Exchange

134962-Thumbnail Image.png
Description
One hypothesis for why insects are smaller than vertebrates is that the blind-ended tracheal respiratory system challenges oxygen delivery for larger insects. Supporting this hypothesis, several studies have documented that larger insect species have larger gas transport structures than expected

One hypothesis for why insects are smaller than vertebrates is that the blind-ended tracheal respiratory system challenges oxygen delivery for larger insects. Supporting this hypothesis, several studies have documented that larger insect species have larger gas transport structures than expected by isometric scaling. To further test this hypothesis, we performed the first inter-specific study of the scaling of spiracle size, using ten scarab beetle species, including some of the most massive insects. Using micro-CT, we measured the cross sectional area and depth of all eight spiracles. Areas of large spiracles in the anterior portion of the animal showed hypermetric scaling, varying approximately with mass^0.8. However, because diffusive capacities scaled with lower slopes than metabolic rates, larger beetles had a 10-fold higher required PO2 gradient across the spiracles to sustain oxygen consumption by diffusion. Despite this trend, calculations suggest that large beetles can exchange oxygen by diffusion across the spiracles at rest, but likely no beetles can do so during flight. Advective capacities through the spiracles scale with mass^1.8, suggestive of a switch toward greater use of convection and/or reduced required pressures in larger beetles.
Date Created
2017-05
Agent