Integrability of quadratic non-autonomous quantum linear systems

150689-Thumbnail Image.png
Description
The Quantum Harmonic Oscillator is one of the most important models in Quantum Mechanics. Analogous to the classical mass vibrating back and forth on a spring, the quantum oscillator system has attracted substantial attention over the years because of its

The Quantum Harmonic Oscillator is one of the most important models in Quantum Mechanics. Analogous to the classical mass vibrating back and forth on a spring, the quantum oscillator system has attracted substantial attention over the years because of its importance in many advanced and difficult quantum problems. This dissertation deals with solving generalized models of the time-dependent Schrodinger equation which are called generalized quantum harmonic oscillators, and these are characterized by an arbitrary quadratic Hamiltonian of linear momentum and position operators. The primary challenge in this work is that most quantum models with timedependence are not solvable explicitly, yet this challenge became the driving motivation for this work. In this dissertation, the methods used to solve the time-dependent Schrodinger equation are the fundamental singularity (or Green's function) and the Fourier (eigenfunction expansion) methods. Certain Riccati- and Ermakov-type systems arise, and these systems are highlighted and investigated. The overall aims of this dissertation are to show that quadratic Hamiltonian systems are completely integrable systems, and to provide explicit approaches to solving the time-dependent Schr¨odinger equation governed by an arbitrary quadratic Hamiltonian operator. The methods and results established in the dissertation are not yet well recognized in the literature, yet hold for high promise for further future research. Finally, the most recent results in the dissertation correspond to the harmonic oscillator group and its symmetries. A simple derivation of the maximum kinematical invariance groups of the free particle and quantum harmonic oscillator is constructed from the view point of the Riccati- and Ermakov-type systems, which shows an alternative to the traditional Lie Algebra approach. To conclude, a missing class of solutions of the time-dependent Schr¨odinger equation for the simple harmonic oscillator in one dimension is constructed. Probability distributions of the particle linear position and momentum, are emphasized with Mathematica animations. The eigenfunctions qualitatively differ from the traditional standing waves of the one-dimensional Schrodinger equation. The physical relevance of these dynamic states is still questionable, and in order to investigate their physical meaning, animations could also be created for the squeezed coherent states. This will be addressed in future work.
Date Created
2012
Agent

Non-linear system identification using compressed sensing

150319-Thumbnail Image.png
Description
This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are capable of identifying this system. The challenge in identification also lies in the coupled behavior of the system and in the difficulty of obtaining the full-range dynamics. The differential equations describing the system dynamics are determined from measurements of the system's input-output behavior. These equations are assumed to consist of the superposition, with unknown weights, of a small number of terms drawn from a large library of nonlinear terms. Under this assumption, compressed sensing allows the constituent library elements and their corresponding weights to be identified by decomposing a time-series signal of the system's outputs into a sparse superposition of corresponding time-series signals produced by the library components. The most popular techniques for non-linear system identification entail the use of ANN's (Artificial Neural Networks), which require a large number of measurements of the input and output data at high sampling frequencies. The method developed in this project requires very few samples and the accuracy of reconstruction is extremely high. Furthermore, this method yields the Ordinary Differential Equation (ODE) of the system explicitly. This is in contrast to some ANN approaches that produce only a trained network which might lose fidelity with change of initial conditions or if facing an input that wasn't used during its training. This technique is expected to be of value in system identification of complex dynamic systems encountered in diverse fields such as Biology, Computation, Statistics, Mechanics and Electrical Engineering.
Date Created
2011
Agent