Development of a Novel Zebrafish Model for Dynamin-1 Epileptic Encephalopathy

133009-Thumbnail Image.png
Description
Epileptic encephalopathies (EE) are genetic or environmentally-caused conditions that cause “catastrophic” damage or degradation to the sensory, cognitive, and behavioral centers of the brain. Whole-exome sequencing identified de novo heterozygous missense mutations within the DNM1 gene of five pediatric patients

Epileptic encephalopathies (EE) are genetic or environmentally-caused conditions that cause “catastrophic” damage or degradation to the sensory, cognitive, and behavioral centers of the brain. Whole-exome sequencing identified de novo heterozygous missense mutations within the DNM1 gene of five pediatric patients with epileptic encephalopathies. DNM1 encodes for the dynamin-1 protein which is involved in endocytosis and synaptic recycling, and it is a member of dynamin GTPase. The zebrafish, an alternative model system for drug discovery, was utilized to develop a novel model for dynamin-1 epileptic encephalopathy through a small molecule inhibitor. The model system mimicked human epilepsy caused by DNM1 mutations and identified potential biochemical pathways involved in the production of this phenotype. The use of microinjections of mutated DNM1 verified phenotypes and was utilized to determine safe and effective antiepileptic drugs (AEDs) for treatment of this specific EE. This zebrafish dynamin-1 epileptic encephalopathy model has potential uses for drug discovery and investigation of this rare childhood disorder.
Date Created
2019-05
Agent